Revolução cubana
Introdução
Neste trabalho abordaremos o tema “operações com polinômios” que são expressões algébricas com coeficientes de números naturais, São polinômios p(x)= X2+3x-4 p(x)=2x+1/4 x2+3/5 x-1, Não são polinômios p(x)=x-2+4x2+x p=(x)2x2+x1/2-4.
Desenvolvimento
Os polinômios formam um plano conceitual importante na álgebra, entretanto possuem também uma relevante importância na geometria, quando se deseja calcular expressões que envolvem valores desconhecidos.
A definição de polinômio abrange diversas áreas, pois podemos ter polinômios com apenas um termo na expressão algébrica, como por exemplo: 2x, y, 4z, 2, 5, etc. Mas podemos possuir polinômios com uma infinidade de termos. Por exemplo:
P(x)=an xn+a(n-1) x(n-1)+...+a2 x2+a1 x+a0
Como podemos notar, polinômios são compostos pelas várias expressões algébricas, desde aquelas que envolvem apenas números, até as que apresentam diversas letras, potências, coeficientes, entre outros elementos dos polinômios.
Os polinômios se encontram em um âmbito da matemática denominado álgebra, contudo a álgebra correlaciona o uso de letras, representativas de um número qualquer, com operações aritméticas. Portanto, podemos, assim, efetuar as operações aritméticas nos polinômios, que são: adição, subtração, divisão, multiplicação, potenciação e radiciação.
Buscaremos, então, nesta seção, abarcar todas as propriedades dos polinômios, assim como as operações aritméticas desses números.
Multiplicação
Multiplicação de polinômio por polinômio
Para efetuarmos a multiplicação de polinômio por polinômio também devemos utilizar a propriedade distributiva. Veja o exemplo:
(x – 1) * (x2 + 2x - 6)
x2 * (x – 1) + 2x * (x – 1) – 6 * (x – 1)
(x³ – x²) + (2x² – 2x) – (6x – 6)
x³ – x² + 2x² – 2x – 6x + 6 → reduzindo os termos semelhantes.
x³ + x² – 8x + 6
Portanto, nas multiplicações entre monômios e polinômios aplicamos a