microeconomia e macroeconomia
Unidade 2 – MEDIDAS ESTATÍSTICAS: MEDIDAS DE TENDÊNCIA CENTRAL
O nosso objetivo aqui é a determinação e de medidas que ofereçam o posicionamento da distribuição dos valores de uma variável que desejamos analisar. São os cálculos estatísticos que representam uma série de dados orientando-nos quanto à posição da distribuição de dados, sendo que as medidas de posição mais utilizadas são: média aritmética, média ponderada, moda e mediana.
Média Aritmética (): A medida de tendência central mais comum para um conjunto de dados é a média aritmética. A média aritmética amostral de um conjunto de dados é o quociente entre a soma dos valores do conjunto e o número total dos valores, conforme indicado pela fórmula abaixo:
Onde: xi são os valores da variável e n o número de valores.
Exemplo 1: Encontrar a média aritmética para um conjunto de observações: 5, 1, 6, 2, 4. Solução: Temos cinco observações (n=5), então:
Quando a amostra é muito grande e os dados são discretos, podem ocorrer valores repetidos. Nesse caso, é razoável organizar os dados em uma tabela de distribuição de frequências e trabalharmos com dados agrupados.
Quando os dados estiverem agrupados numa distribuição de frequência, utilizaremos a média aritmética dos valores x1, x2, x3,....xn ponderados pelas respectivas frequência absolutas f1, f2, f3,..., fn, Assim:
“Neste caso, convencionamos que todos os valores incluídos em um determinado intervalo de classe coincidem com o seu ponto médio, e determinamos a média aritmética ponderada por meio da fórmula” anterior, onde xi é o ponto médio da classe (AMAZONAS, 2013, p. 16).
Exemplo (Cálculo da média com intervalos de classes): A Tabela 1 apresenta uma distribuição de frequência que será utilizada como exemplo de cálculo da média com dados agrupados em intervalo de classes.
Nos dados da Tabela 01, aplicando a equação anterior, temos que:
O valor obtido indica que a média ponderada da distribuição de frequência indicada pela