Medidas de tendência central e medidas de dispersão
As medidas de tendência central são valores que, de certa forma, e de maneira condensada, trazem consigo informações contidas nos dados estatísticos – sejam eles, populacionais ou amostrais. Elas funcionam como uma espécie de “medidas-resumo”, pois nos passam a ideia, digamos, do comportamento geral das observações estudadas. Podemos dizer ainda que elas são como valores de referência, em torno dos quais, os outros se distribuem. Quando estão associadas aos dados populacionais, são chamadas de parâmetros; quando são calculadas a partir de amostras, são denominadas estatísticas. Essa diferença ocorre porque os parâmetros são valores constantes (fixos), pois são calculados a partir de todos os dados de certo conjunto, isto é, a população de interesse. Porém, se trabalhamos com amostras, as medidas estatísticas obtidas variarão de acordo com as observações que foram selecionadas. Por isso, elas não são valores fixos, pois dependem dos elementos da amostra particular que foi escolhida.
Média Aritmética
Média Aritmética, ou simplesmente média, é uma medida que funciona como o ponto de “equilíbrio” de um conjunto de dados, é representada pela letra grega μ (devemos ler “mi”), quando seu cálculo é feito a partir de todos os valores de uma população. Usaram-se dados amostrais para obtê-la, é referida como χ ̅ (lemos “Xis barra”). É a medida de tendência central mais popular (desde o início de nossa vida escolar, já nos habituamos com seu cálculo) e pelas suas propriedades matemáticas é bastante usada na Estatística Inferencial.
- Há dois casos a serem considerados no cálculo da média.
1º Caso – Quando tratamos com dados isolados ou não tabelados.
Suponha que suas notas em uma seleção para um curso de aperfeiçoamento foram 5,6; 4,8; 8,0; 8,6; 6,8; 9,4. Então, se todas têm o mesmo peso, sua média será:
Exemplo 1 χ ̅ = (5,6+4,8+8,0+8,6+6,8+9,4)/6 = 43,2/6 = 7,2.
Exemplo 2 χ ̅ = (1+2+3+4+5+6+7+8+9+10)/10 = 55/10 = 5,5.
Formalizando