matriz

495 palavras 2 páginas
tre outras.

Conceituando matriz
Para compreendermos a conceituação de matriz, precisamos aderir à convenção dos matemáticos em que a ordenação das linhas de uma matriz seja dada de cima para baixo, e a ordenação das colunas, da esquerda para a direita. Veja o exemplo abaixo e perceba a prática desta convenção. matrizes1 Vejamos mais detalhadamente o resultado desta convenção. matrizes2 Em termos gerais: uma matriz m x n, com m e n números naturais não nulos, é toda tabela composta por m.n elementos dispostos em m linhas e n colunas.
Representando matrizes
Uma matriz é, em geral, representa por uma letra maiúscula do nosso alfabeto (A, B, C, ...Z), enquanto os seus termos são representados pela mesma letra, desta vez minúscula, acompanhada de dois índices (a11 a12 a13 ... amn), onde o primeiro representa a linha e o segundo a coluna em que o elemento está localizado.
Uma representação genérica de matriz é mostrada em seguida: matrizes3 Chamemos esta matriz de A, e sua ordem é m x n, ou seja, m linhas e n colunas. Nela podemos observar o elemento aij, onde i representa a linha e j a coluna. Tomemos como exemplo o elemento a32 → i = 3 e j = 2. O elemento está localizado na 3ª linha e na 2ª coluna. Ainda podemos chamar esta matriz de A = (aij)m x n.
Tipos de matrizes
Matriz quadrada
Dizemos que uma matriz A de ordem m x n é quadrada, quando m = n. Isso significa que o número de linhas será igual ao número de colunas. Podemos representar este tipo de matriz por An.
Exemplos:
matrizes4

Matriz triangular
Uma matriz de ondem n (quadrada) é triangular quando todos os elementos acima ou abaixo da diagonal principal são nulos (iguais à zero).
Exemplos:
matriz triangular

Lembrete: O enunciado diz que os elementos acima OU abaixo da diagonal principal, na matriz quadrada, são nulos, ou seja, somente uma dessas partes (acima ou abaixo) deverá estar nula para caracterizar uma matriz quadrada. Quando estas duas partes são nulas,

Relacionados

  • Matriz
    818 palavras | 4 páginas
  • matriz
    1193 palavras | 5 páginas
  • Matriz
    1903 palavras | 8 páginas
  • Matriz
    1986 palavras | 8 páginas
  • Matriz
    520 palavras | 3 páginas
  • O Que Matriz
    1168 palavras | 5 páginas
  • matriz
    1016 palavras | 5 páginas
  • Matriz
    4674 palavras | 19 páginas
  • Matriz
    1008 palavras | 5 páginas
  • matriz
    1336 palavras | 6 páginas