Matematica financeira hp 12c
Lição 1: O Valor do Dinheiro no Tempo
A Matemática Financeira surgiu da necessidade de se levar em conta o valor do dinheiro no tempo.
Mas o que é o "valor do dinheiro no tempo"?
Intuitivamente, sabemos que R$ 4.000,00 hoje "valem" mais que esses mesmos R$ 4.000,00 daqui a um ano, por exemplo. A princípio, isso nos parece muito simples, porém, poucas pessoas conseguem explicar porque isso ocorre.
É aí que entram os juros. Os R$ 4.000,00, hoje, valem mais do que os R$ 4.000,00 daqui a um ano porque esse capital poderia ficar aplicado em um banco, por exemplo, e me render juros que seriam somados aos R$ 4.000,00, resultando numa quantia, obviamente, maior que esse capital.
Por exemplo: suponha que um banco me pague R$ 400,00 de juros ao ano caso eu aplique esses R$ 4.000,00 hoje. Isso quer dizer que, daqui a um ano, quando esse capital for resgatado, o valor recebido será de R$ 4.400,00, e não somente os R$ 4.000,00 iniciais.
Isso mostra que receber os R$ 4.000,00 hoje seria equivalente a receber R$ 4.400,00 daqui a um ano, e não os mesmos R$ 4.000,00, já que esses, daqui a um ano, já terão perdido parte de seu valor. Os juros de R$ 400,00 referentes ao prazo de um ano funcionariam como uma recompensa por termos de esperar todo esse tempo para ter o dinheiro em vez de tê-lo hoje.
É esse o valor do dinheiro no tempo. Os juros fazem com que uma determinada quantia, hoje, seja equivalente a outra no futuro. Apesar de diferentes nos números, os valores R$ 4.000,00 hoje e R$ 4.400,00 daqui a um ano seriam equivalentes para juros de R$ 400,00.
Um capital de R$ 4.000,00 só será equivalente a R$ 4.000,00 daqui a um ano na hipótese absurda de a taxa de juros ser considerada igual a 0.
A Matemática Financeira, portanto, está diretamente ligada ao valor do dinheiro no tempo, que por sua vez está ligado à existência da taxa de juros. Lição 2: Principais Conceitos
CAPITAL ou VALOR PRESENTE (VP)
Capital ou Valor Presente (VP) é o