kljn
02 / 2014
Tales de Mileto foi um importante filósofo, astrônomo e matemático grego que viveu antes de Cristo. Ele usou seus conhecimentos sobre Geometria e proporcionalidade para determinar a altura de uma pirâmide. Em seus estudos, Tales observou que os raios solares que chegavam à Terra estavam na posição inclinada e eram paralelos, dessa forma, ele concluiu que havia uma proporcionalidade entre as medidas da sombra e da altura dos objetos, observe a ilustração:
Com base nesse esquema, Tales conseguiu medir a altura de uma pirâmide com base no tamanho da sua sombra. Para tal situação ele procedeu da seguinte forma: fincou uma estaca na areia, mediu as sombras respectivas da pirâmide e da estaca em uma determinada hora do dia e estabeleceu a proporção:
O Teorema de Tales pode ser determinado pela seguinte lei de correspondência:
“Feixes de retas paralelas cortadas ou intersectadas por segmentos transversais formam segmentos de retas proporcionalmente correspondentes”.
Para compreender melhor o teorema observe o esquema representativo a seguir:
Pela proporcionalidade existente no Teorema, temos a seguinte situação:
Número de ouro
O número de ouro não é mais do que um valor numérico cujo valor aproximado é 1,618.
Este número irracional é considerado por muitos o símbolo da harmonia. A escola grega de Pitágoras estudou e observou muitas relações e modelos numéricos que apareciam na natureza, beleza, estética, harmonia musical e outros, mas provavelmente a mais importante é a razão áurea, razão divina ou proporção divina. Se quiséssemos dividir um segmento AB em duas partes, teríamos uma infinidade de maneiras de o fazer. Existe uma, no entanto, que parece ser mais agradável à vista, como se traduzisse uma operação harmoniosa para os nossos sentidos. Relativamente a esta divisão, o matemático alemão Zeizing formulou, em 1855, o seguinte princípio:
“Para que um