Hm talvez depois
(a) lim (3x − 7)
(b) lim (2x2 − 4x + 5)
(c) lim (x3 + 8)
(d) lim
x→5
x→3
x→−2
x→3
2x + 1
2 − 3x + 4 x→−1 x
(f) lim
(e) lim
(g) lim
x→4
3
4x − 5
5x − 1
x→2
x2 − 3x + 4
2x2 − x − 1
(h) lim
x→−3
2. Encontre o limite. x2 − 49
(a) lim x→7 x − 7
4x2 − 9
(c) lim x→−3/2 2x + 3
x2 + 3x + 4 x3 + 1
3
5 + 2x
5−x
x2 − 25 x→−5 x + 5
3x − 1
(d) lim x→1/3 9x2 − 1
(b) lim
3x2 − 17x + 20 x→4 4x2 − 25x + 36
√
x−1
(g) lim x→−3 x − 1
√
3 x+1−1 (i) lim x→0 x
x2 − 9 x→−3 2x2 + 7x + 3
√
x+5−2
(h) lim x→−1 x+1
3
2x − 5x2 − 2x − 3
(j) lim 3 x→3 4x − 13x2 + 4x − 3
(e) lim
(f) lim
3. Seja f a fun¸˜o definida por ca
x2 − 9 se x = −3 f (x) =
4 se x = −3
(a) Encontre lim f (x) e mostre que lim f (x) = f (−3). x→−3 x→−3
(b) Fa¸a um esbo¸o do gr´fico de f . c c a 4. Fa¸a um esbo¸o do gr´fico da fun¸˜o f e encontre, se existir, lim+ f (x), c c a ca x→a lim f (x) e lim f (x); se n˜o existir, indique a raz˜o. a a
−
x→a
x→a
1
(a) a = 1;
f (x) =
2
se x < 1
−1 se x = 1
−3 se x > 1
x + 4 se x ≤ −4
(b) a = −4; f (x) =
4 − x se x > −4
x2 se x ≤ 2
(c) a = 2; f (x) =
8 − 2x se x > 2
(d) a = 1;
f (x) =
2x + 3 se x < 1
4
3
(e) a = ;
2
(f) a = −1;
x2 + 2 se x > 1
f (x) = |2x − 3| − 4
|x − 1| se x < −1
f (x) =
(h) a = 0;
se x = −1
0
(g) a = 0;
se x = 1
|1 − x| se x > −1
|x| x
√−x se x ≤ 0
3
f (x) =
3
√x se x > 0
f (x) =
5. Seja f a fun¸˜o definida por ca
2x − a se x < 3
f (x) = ax + 2b se − 3 ≤ x ≤ 3
b − 5x se x > 3
Encontre os valores de a e b, tais que existam os limites: lim f (x) e lim f (x).
x→−3
x→3
x2 + 3 se x ≤ 1
6. Dada f (x) =
x + 1 se x > 1
e
x2 se x ≤ 1 g(x) =
2 se x >