hiperbole
1 - Introdução
Se você consultar o Novo Dicionário Brasileiro Melhoramentos - 7ª edição, obterá a seguinte definição para a parábola:
"Curva plana, cujos pontos são equidistantes de um ponto fixo (foco) e de uma reta fixa (diretriz) ou curva resultante de uma secção feita num cone por um plano paralelo à geratriz. Curva que um projétil descreve."
Esta definição não está distante da realidade do rigor matemático. (Os dicionários, são, via de regra, uma boa fonte de consulta também para conceitos matemáticos, embora não se consiga neles - é claro - a perfeição absoluta, o que, de uma certa forma, é bastante compreensível, uma vez que a eles, não cabe a responsabilidade pela precisão dos conceitos e definições matemáticas).
2 - Definição
Considere no plano cartesiano xOy, uma reta d (diretriz) e um ponto fixo F (foco) pertencente ao eixo das abcissas (eixo dos x), conforme figura abaixo:
Denominaremos PARÁBOLA, à curva plana formada pelos pontos P(x,y) do plano cartesiano, tais que
PF = Pd onde:
PF = distância entre os pontos P e F
PP' = distância entre o ponto P e a reta d (diretriz).
parabola_01.gif
Importante: Temos portanto, a seguinte relação notável: VF = p/2
3 - Equação reduzida da parábola de eixo horizontal e vértice na origem
Observando a figura acima, consideremos os pontos: F(p/2, 0) - foco da parábola, e P(x,y) - um ponto qualquer da parábola. Considerando-se a definição acima, deveremos ter: PF = PP'
Daí, vem, usando a fórmula da distancia entre pontos do plano cartesiano:
parabola_02.gif