Geometria Plana
1. Considere os pontos notáveis de um triângulo, sendo:
B Baricentro C Circuncentro I Incentro O Ortocentro
Preencha os parênteses:
a) ( ) Ponto de encontro das medianas.
b) ( ) Ponto de encontro das mediatrizes dos lados de um triângulo.
c) ( ) Ponto de encontro das bissetrizes internas de um triângulo
d) ( ) Ponto de encontro das retas suportes das alturas.
e) ( ) Ponto que divide cada mediana numa razão de 2 para 1.
f) ( ) Centro da circunferência inscrita num triângulo.
g) ( ) Centro da circunferência circunscrita a um triângulo.
h) ( ) Ponto do plano de um triângulo e eqüidistante dos vértices desse triângulo.
2. Na figura, N e P são os pontos médios dos lados AC e BC, respectivamente. Se G é o baricentro do triângulo ABC, AP = 6cm e GN = 1,5 cm, obter, em centímetros:
a) AG =
b) GP =
c) BG =
d) BN =
3. No triângulo ABC, da figura, AM e CN são medianas que se interceptam em G. Sendo
AG = 10 cm e CN = 18 cm, calcule x, y e z.
4. Na figura, o triângulo ABC é retângulo em A e M é o ponto médio do lado BC.
Então a medida de α , em graus, é:
a) 80º b) 90º c) 100º d) 110º e) 120º
5. Na figura, M é o ponto médio do lado BC e CN é a bissetriz interna. Então a medida α, em graus, é:
a) 80º b) 75º c) 70º d) 65º e) 60º
6. O triângulo ABC da figura é retângulo em A, AS é a bissetriz interna e AM é mediana.
Então, a medida de α , em graus, é
a) 10º b) 15º c) 20º d) 25º e) 30º
7. (FUVEST-SP) Um triângulo ABC têm ângulos A= 40º e B = 50º. Qual é o ângulo formado pelas alturas relativas aos vértices A e B desse triângulo?
a) 30º b) 45º c) 60º d) 90º e) 120º
8. Um ponto P eqüidista dos vértices de um triângulo ABC. O ponto P é:
a) O baricentro do triângulo ABC.
b) O incentro do triângulo ABC.
c) O circuncentro do triângulo ABC.
d) O ortocentro do triângulo ABC.
e) Um ex-incentro do triângulo ABC.
9. Um ponto Q pertence à