Geometria plana

887 palavras 4 páginas
Região convexa: Uma região, conjuntos de pontos ou figura é convexa se, e somente se, dois pontos distintos quaisquer formam um segmento contido nessa região. Região não convexa ou côncava: Uma região, conjuntos de pontos ou figura não é convexa se, e somente se, dois pontos distintos quaisquer formam um segmento que não está contido nessa região. 1.2 Ângulos adjacentes Dois ângulos consecutivos são adjacentes se, e somente se, não têm pontos internos comuns. AÔB e BÔC são ângulos adjacentes.

1.3 Ângulos opostos pelo vértice (o.p.v) Dois ângulos são opostos pelo vértice se, e somente se, os lados de um dele são as respectivas semi-retas opostas aos lados do outro.

AÔB e CÔD são opostos pelo vértice. AÔD e BÔC são opostos pelo vértice. Deste modo, AÔB é congruente a CÔD e AÔD é congruente a BÔC. _________________________________________________ 1. Ângulos Chama-se ângulo à reunião de duas semi retas de mesma origem, não contida numa mesma reta. 1.4 Adição de ângulos Se a semi reta OB é interna ao ângulo AÔC, o ângulo AÔC é a soma dos ângulos AÔB e BÔC.
^ ^ ^

ac ab bc

A

A O B ou
B

BO A

0

1.1 Ângulos consecutivos Dois ângulos são consecutivos se, e somente se, um lado de um deles é também lado do outro (um lado de um deles coincide com um lado do outro).

1.5 Bissetriz de um ângulo A bissetriz de um ângulo é uma semi reta interna ângulo, com origem no vértice do ângulo e que o divide em dois ângulos congruentes.

^ ^

^ ^

Colaterais internos: c f ; d e
^ ^

^ ^

Colaterais externos: a h ; b g Propriedades Os ângulos correspondentes são congruentes. Os ângulos alternos internos são congruentes. Os ângulos alternos externos são congruentes. Os ângulos colaterais internos são suplementares. Os ângulos colaterais externos são suplementares.

1.6 Ângulo reto, agudo e obtuso Ângulo reto é todo ângulo com medida 90°. Ângulo agudo é todo ângulo com medida menor que 90°. Ângulo obtuso é todo ângulo com medida maior que 90°.

1)

Relacionados

  • GEOMETRIA PLANA
    954 palavras | 4 páginas
  • geometria plana
    1598 palavras | 7 páginas
  • geometria plana
    293 palavras | 2 páginas
  • geometria plana
    966 palavras | 4 páginas
  • geometria plana
    724 palavras | 3 páginas
  • Geometria plana
    1017 palavras | 5 páginas
  • geometria plana
    1856 palavras | 8 páginas
  • Geometria Plana
    1158 palavras | 5 páginas
  • Geometria plana
    1995 palavras | 8 páginas
  • Geometria Plana
    1298 palavras | 6 páginas