Geometria espacial
Geometria Espacial é o estudo da geometria no espaço, onde estudamos as figuras que possuem mais de duas dimensões, essas figuras recebem o nome de sólidos geométricos ou figuras geométricas espaciais, são conhecidas como: prisma (cubo, paralelepípedo), pirâmides, cone, cilindro, esfera.
Se observarmos cada figura citada acima, iremos perceber que cada uma tem a sua forma representada em algum objeto na nossa realidade, como:
Prisma: caixa de sapato, caixa de fósforos.
Cone: casquinha de sorvete.
Cilindro: cano PVC, canudo.
Esfera: bola de isopor, bola de futebol.
Essas figuras ocupam um lugar no espaço, então a geometria espacial é responsável pelo cálculo do volume (medida do espaço ocupada por um sólido) dessas figuras e o estudo das estruturas das figuras espaciais.
Conceitos gerais
Um plano é um subconjunto do espaço R3 de tal modo que quaisquer dois pontos desse conjunto pode ser ligado por um segmento de reta inteiramente contido no conjunto.
Um plano no espaço R3 pode ser determinado por qualquer uma das situações:
• Três pontos não colineares (não pertencentes à mesma reta);
• Um ponto e uma reta que não contem o ponto;
• Um ponto e um segmento de reta que não contem o ponto;
• Duas retas paralelas que não se sobrepõe;
• Dois segmentos de reta paralelos que não se sobrepõe;
• Duas retas concorrentes;
• Dois segmentos de reta concorrentes.
Duas retas (segmentos de reta) no espaço R3 podem ser: paralelas, concorrentes ou reversas.
Duas retas são ditas reversas quando uma não tem interseção com a outra e elas não são paralelas. Pode-se pensar de uma rera r desenhada no chão de uma casa e uma reta s desenhada no teto dessa mesma casa.
[pic]
Uma reta é perpendicular a um plano no espaço R3, se ela intersecta o plano em um ponto P e todo segmento de reta contido no plano que tem P como uma de suas extremidades é perpendicular à reta.
[pic]
Uma reta r é paralela a um plano no espaço R3, se existe uma reta s inteiramente contida no plano que