Função exponecial
Chamamos de equações exponenciais toda equação na qual a incógnita aparece em expoente.
Exemplos de equações exponenciais:
1) 3x =81 (a solução é x=4)
2) 2x-5=16 (a solução é x=9)
3) 16x-42x-1-10=22x-1 (a solução é x=1)
4) 32x-1-3x-3x-1+1=0 (as soluções são x’=0 e x’’=1)
Para resolver equações exponenciais, devemos realizar dois passos importantes: 1º) redução dos dois membros da equação a potências de mesma base; 2º) aplicação da propriedade:
EXERCÍCIOS RESOLVIDOS:
1) 3x=81
Resolução: Como 81=34, podemos escrever 3x = 34
E daí, x=4.
2) 9x = 1
Resolução: 9x = 1 ( 9x = 90 ; logo x=0.
5) 23x-1 = 322x
Resolução: 23x-1 = 322x ( 23x-1 = (25)2x ( 23x-1 = 210x ; daí 3x-1=10, de onde x=-1/7.
6) Resolva a equação 32x–6.3x–27=0.
Resolução: vamos resolver esta equação através de uma transformação:
32x–6.3x–27=0 ( (3x)2-6.3x–27=0
Fazendo 3x=y, obtemos: y2-6y–27=0 ; aplicando Bhaskara encontramos ( y’=-3 e y’’=9
Para achar o x, devemos voltar os valores para a equação auxiliar 3x=y:
y’=-3 ( 3x’ = -3 ( não existe x’, pois potência de base positiva é positiva y’’=9 ( 3x’’ = 9 ( 3x’’ = 32 ( x’’=2
Portanto a solução é x=2
FUNÇÃO EXPONENCIAL
Chamamos de funções exponenciais aquelas nas quais temos a variável aparecendo em expoente. A função f:IR(IR+ definida por f(x)=ax, com a ( IR+ e a(1, é chamada função exponencial de base a. O domínio dessa função é o conjunto IR (reais) e o contradomínio é IR+ (reais positivos, maiores que zero).
GRÁFICO CARTESIANO DA FUNÇÃO EXPONENCIAL
Temos 2 casos a considerar: ( quando a>1; ( quando 0<a<1.
Acompanhe os exemplos seguintes:
1) y=2x (nesse caso, a=2, logo a>1) Atribuindo alguns valores a x e calculando os correspondentes valores de y, obtemos a tabela e o gráfico abaixo:
|x |-2 |-1 |0 |1 |2 |
|y |1/4 |1/2 |1 |2 |4