Filosofia
NUMEROS NATURAIS
Pertencem ao conjunto dos naturais os números inteiros positivos, incluindo o zero. Esse conjunto é representado pela letra N maiúscula. Os elementos dos conjuntos devem estar sempre entre chaves.
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... }
- Quando for representar o Conjunto dos Naturais não nulos (excluindo o zero) devemos colocar * ao lado do N.
Representado assim:
N* = {1, 2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12, ... }
A reticência indica que sempre é possível acrescentar mais um elemento.
N = {0, 1, 2, 3, 4, 5, 6, ...} ou N = {0, 1, 2, 3, 4, 5, 6, 7, ... }
Qualquer que seja o elemento de N, ele sempre tem um sucessor. Também falamos em antecessor de um número.
• 6 é o sucessor de 5.
• 7 é o sucessor de 6.
• 19 é antecessor de 20.
• 47 é o antecessor de 48.
Como todo número natural tem um sucessor, dizemos que o conjunto N é infinito.
Quando um conjunto é finito?
O conjunto dos números naturais maiores que 5 é infinito: {6, 7, 8, 9, ...}
Já o conjunto dos números naturais menores que 5 é finito: {0, 1, 2, 3, 4}
Veja mais alguns exemplos de conjuntos finitos.
• O conjunto dos alunos da classe.
• O conjunto dos professores da escola.
• O conjunto das pessoas que formam a população brasileira.
NUMEROS INTEIROS
Os números inteiros são constituídos dos números naturais,1 incluindo o zero (0, 1, 2, 3, ...) e todos números negativos simétricos aos números naturais não nulos (−1, −2, −3,-4 ...).1 Dois números são simétricos se, e somente se, sua soma é zero.2 Por vezes, no ensino pré-universitário, chamam-se a estes números inteiros relativos.
O conjunto de todos os inteiros é representado por um Z em negrito (ou ainda um em blackboard bold, ou ℤ, cujo código Unicode é U+2124), que vem do alemão Zahlen, que significa números, algarismos.
Os inteiros (juntamente com a operação de adição) formam o menor grupo que contém o monoide aditivo dos números naturais. Como os números naturais, os inteiros