Estudos
EXTRAS
DE
TRIGONOMETRIA-1°ANO
Teresópolis, março de 2012.
LEI DOS SENOS, LEI DOS COSSENOS E FÓRMULA TRIGONOMÉTRICA DA ÁREA PROFESSOR: CARLINHOS TRIGONOMETRIA
1. (Ufpe) Uma ponte deve ser construída sobre um rio, unindo os pontos A e B, como ilustrado na figura abaixo. Para calcular o comprimento AB, escolhe-se um ponto C, na mesma margem em que B está, e medem-se os ângulos CBA = 57° e ACB = 59°. Sabendo que BC mede 30m, indique, em metros, a distância AB. (Dado: use as aproximações sen(59°) ¸ 0,87 e sen(64°) ¸ 0,90)
4. (Ufrj) Os ponteiros de um relógio circular medem, do centro às extremidades, 2 metros, o dos minutos, e 1 metro, o das horas. Determine a distância entre as extremidades dos ponteiros quando o relógio marca 4 horas. 5. (Unesp) Os lados de um triângulo medem 2Ë3, Ë6 e 3+Ë3. Determine o ângulo oposto ao lado que mede Ë6. 6. (Unicamp) Sejam A, B e C pontos de uma circunferência tais que, åæ=2km, æè=1km e a medida do ângulo AïC seja de 135°. a) Calcule o raio dessa circunferência. b) Calcule a área do triângulo ABC. 7. (Cesgranrio) No triângulo ABC, os lados AC e BC medem 8 cm e 6 cm, respectivamente, e o ângulo A vale 30°. O seno do ângulo B vale: a) 1/2 b) 2/3 c) 3/4 d) 4/5 e) 5/6 8. (Ufsm) Na instalação das lâmpadas de uma praça de alimentação, a equipe necessitou calcular corretamente a distância entre duas delas, colocadas nos vértices B e C do triângulo, segundo a figura. Assim, a distância "d" é
2. (Unesp) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura.
A rodovia AC tem 40 km, a rodovia AB tem 50 km, os ângulos x, entre AC e AB, e y, entre AB e BC, são tais que senx = 3/4 e seny = 3/7. Deseja-se construir uma nova rodovia ligando as cidades D e E que, dada a disposição destas cidades, será paralela a BC. a) Use a lei dos senos para determinar quantos quilômetros tem a rodovia BC. b) Sabendo que AD tem 30 km, determine quantos quilômetros terá a rodovia DE. 3. (G1) Na