Estatistia Atividades
Um motivo tão mundano quanto os jogos de azar é que acabou levando ao desenvolvimento da Análise Combinatória. A necessidade de calcular o número de possibilidades existentes nos jogos gerou o estudo dos métodos de contagem. Grandes matemáticos se ocuparam com o assunto: o italiano Niccollo Fontana (1500-1557), conhecido como Tartaglia, e os franceses Pierre de Fermat (1601-1665) e Blaise Pascal (1623-1662). A Análise Combinatória visa desenvolver métodos que permitam contar - de uma forma indireta - o número de elementos de um conjunto, estando esses elementos agrupados sob certas condições.
1.1 A Construção de Grupos
A Análise Combinatória é um conjunto de procedimentos que possibilita a construção, sob certas circunstâncias, de grupos diferentes formados por um número finito de elementos de um conjunto.
Na maior parte das vezes, tomaremos conjuntos Z com n elementos e os grupos formados com elementos de Z terão k elementos, isto é, k será a taxa do agrupamento, com k ≤ n.
Dois conceitos são fundamentais para a análise combinatória: Fatorial de um número e o Princípio Fundamental da Contagem.
Os três tipos principais de agrupamentos são as Permutações, os Arranjos e as Combinações. Estes agrupamentos podem ser simples, com repetição ou circulares.
1.2 Fatorial de um Número
Nos problemas de contagem é muito comum um tipo de problema em que, para se obter o resultado referente ao total das possibilidades, deve-se multiplicar um determinado número natural pelos seus antecedentes até chegar à unidade.
Para facilitar a obtenção desses resultados, as calculadoras (consideradas científicas) vêm com uma tecla conhecida como fatorial de n, que significa produto do número natural n pelos seus antecedentes até chegar à unidade.
Considere n um número inteiro não negativo. O fatorial de n, indicado por n!, é definido como sendo a seguinte multiplicação: n! = n · (n-1) · (n-2) · ... · 3 · 2 · 1
A definição acima refere-se a