equacao

522 palavras 3 páginas
EQUACAO
1) Se eu adicionar 8 à quantidade de carrinhos que possuo, ficarei com a mesma quantidade de carrinhos de meu irmão, se dos 28 que ele possui, for retirada a quantidade que eu possuo. Quantos carrinhos eu tenho?
Primeiramente vamos assumir que x seja a quantidade de carrinhos que eu possuo. Vamos montar então a expressão matemática por partes.
Sendo x a quantidade de carrinhos que eu possuo, ao adicionar 8, ficarei com x + 8.
Do enunciado sabemos que ele tem 28 carrinhos e se subtrairmos deste número a quantidade que eu possuo (x), ficaremos com quantidade iguais. Então: x + 8 = 28 - x
A partir daí devemos deixar a incógnita x isolada no lado direito, passando os coeficientes para o outro lado.
O x que está sendo subtraído no segundo membro, passará ao primeiro membro sendo adicionado. x + x + 8 = 28 x mais x é igual a 2x, assim como uma laranja mais uma laranja é igual a duas laranjas.
2x + 8 = 28
Passemos agora o 8 que está sendo adicionado, para o outro lado, na operação inversa, ou seja, sendo subtraído:
2x = 28 - 8
Realizando a subtração:
2x = 20
O coeficiente 2 que está multiplicando a incógnita x, passará para o outro membro dividindo o termo 20:

Realizando a divisão encontramos a raiz 10: x = 10
Portanto:
Eu tenho 10 carrinhos.

Enunciado2) Comprei 7,5kg de um produto e recebi um troco de R$ 1,25. Caso eu tivesse comprado 6kg, o troco teria sido de R$ 5,00. Quanto dei em dinheiro para pagar a mercadoria?
Digamos que p seja o preço por kg da mercadoria. Como em ambos os casos eu teria um troco a receber, então o valor que eu dei em pagamento seria igual à massa comprada vezes o preço por kg mais o troco nas duas situações. Teríamos então:

O 6p que está sendo somado no segundo membro, passará ao primeiro membro sendo subtraído, ao mesmo tempo em que o 1,25 à esquerda que está sendo somado passará à direita subtraindo:

Realizando as subtrações:

O coeficiente 1,5 que está multiplicando a incógnita p irá para o outro

Relacionados

  • EQUAÇÃO
    834 palavras | 4 páginas
  • equação
    7855 palavras | 32 páginas
  • equação
    1187 palavras | 5 páginas
  • Equação
    375 palavras | 2 páginas
  • equacao
    651 palavras | 3 páginas
  • Equação
    2790 palavras | 12 páginas
  • Equaçao
    313 palavras | 2 páginas
  • equação
    1297 palavras | 6 páginas
  • equação
    1059 palavras | 5 páginas
  • equação
    342 palavras | 2 páginas