EDs Resistência dos Materiais 6 semestre engenharia unip
Como a tensão de escoamento é desconhecida, é preciso descobrir a tensão que causa a ruina na viga engastada. Essa tensão é causada por um momento (My) de 80*5=400 kNm.
Na barra bi apoiada com uma força F no meio do vão, o momento máximo será: M=0,5*F*2,5=1,25F kNm.
Igualando as tensões e eliminando a cota ‘z’ e o momento central de inercia ‘Iy’, já que a seção da barra é a mesma, e fica somente que: My (barra bi apoiada) =My (barra engastada), portanto o valor da força F é de 128 kN.
Alternativa B
ED 2 O maior momento aplicado na barra é 4000F Nmm e a tensão de escoamento do material é de 100 N/mm², calculando o momento central de inercia ‘Iy’ é igual a 4,5*10^8 mm4.
Substituindo os valores na equação da tensão menor ou igual a tensão admissível, encontramos que F tem que ser menor ou igual a 75 kN, logo a maior força a ser aplicada é 75 kN.
Alternativa D
ED 3
Cálculo das reações: HA=0 VA=5,5 tf (p/ cima) VB=0,5 tf (p/ baixo) -Momento que chega na seção pedida: [Da direita para a esquerda] M=3*2=6 tf*m TB Esse M encontrado é My. Não tem tensão normal (N) e nem Mz. -Equação da linha neutra Sem N e Mz, a equação fica: (My/Iy)*z=0
Como My/Iy é diferente de 0, z=0. A LN passa pela origem e é normal a Z. Transformando as unidades Iy=13640 cm^4 = 1,364*10^(-4) m^4 Zd=26-9,8 cm = 16,2 cm = +0,162 m [positivo por que está na área tracionada] Finalmente: tensão=(My/Iy)*z[do ponto A] tensão=(6/1,364*10^(-4))*(+0,162) tensão=+7126,1 tf/m² Ajustando a unidade com as das respostas: +7126,1 tf/m² = +712,61 kgf/cm²
Alternativa C
ED 4
As forças que atuam na seção são:
N=-10P N e My=3000P Nmm TC
O cg da figura em Y vale 138,08 mm, e o momento central de inercia Iy vale 40,71*106.
Calculando o Pmáx para a tração encontramos que Pmáx= 16676 N
Calculando o Pmáx para a compressão encontramos que Pmáx= 8975 N
Observação: Se calcularmos o Pmáx sem a compressão de 10P, encontramos os seguintes valores, Pmáx(tração)=13158 N e Pmáx(compressão)=9823 N. E 9823 N é o