Ecologia
1 – Definição
Entenderemos por progressão geométrica - PG - como qualquer sequência de números reais ou complexos, onde cada termo a partir do segundo, é igual ao anterior, multiplicado por uma constante denominada razão.
Exemplos:
(1,2,4,8,16,32, ... ) PG de razão 2
(5,5,5,5,5,5,5, ... ) PG de razão 1
(100,50,25, ... ) PG de razão 1/2
(2,-6,18,-54,162, ...) PG de razão -3
2 - Fórmula do termo geral
Seja a PG genérica: (a1, a2, a3, a4, ... , a n, ... ) , onde a1 é o primeiro termo, e an é o n-ésimo termo, ou seja, o termo de ordem n. Sendo q a razão da PG, da definição podemos escrever: a2 = a1 . q a3 = a2 . q = (a1 . q) . q = a1 . q2 a4 = a3 . q = (a1 . q2) . q = a1 . q3
................................................
................................................
Infere-se (deduz-se) que: an = a1 . qn-1 , que é denominada fórmula do termo geral da PG.
Genericamente, poderemos escrever: aj = ak . qj-k
Exemplos:
a) Dada a PG (2,4,8,... ), pede-se calcular o décimo termo.
Temos: a1 = 2, q = 4/2 = 8/4 = ... = 2. Para calcular o décimo termo ou seja a10, vem pela fórmula: a10 = a1 . q9 = 2 . 29 = 2. 512 = 1024
b) Sabe-se que o quarto termo de uma PG crescente é igual a 20 e o oitavo termo é igual a 320. Qual a razão desta PG?
Temos a4 = 20 e a8 = 320. Logo, podemos escrever: a8 = a4 . q8-4 . Daí, vem: 320 = 20.q4
Então q4 =16 e portanto q = 2.
Nota: Uma PG genérica de 3 termos, pode ser expressa como:
(x/q, x, xq), onde q é a razão da PG.
3 - Propriedades principais
P1 - em toda PG, um termo é a média geométrica dos termos imediatamente anterior e posterior.
Exemplo: PG (A,B,C,D,E,F,G)
Temos então: B2 = A . C ; C2 = B . D ; D2 = C . E ; E2 = D . F etc.
P2 - o produto dos termos equidistantes dos extremos de uma PG é constante.
Exemplo: PG ( A,B,C,D,E,F,G)
Temos então: A . G = B . F = C . E = D . D = D2
4 - Soma dos n primeiros termos de uma PG
Seja a PG (a1, a2, a3, a4, ... , an , ...) . Para o cálculo