Eaquação
452 palavras
2 páginas
INTRODUÇÃO Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos:2x + 8 = 0
5x - 4 = 6x + 8
3a - b - c = 0 Não são equações:
4 + 8 = 7 + 5 (Não é uma sentença aberta) x - 5 < 3 (Não é igualdade) (não é sentença aberta, nem igualdade) A equação geral do primeiro grau: ax+b = 0 onde a e b são números conhecidos e a diferente de 0, se resolve de maneira simples: subtraindo b dos dois lados, obtemos: ax = -b dividindo agora por a (dos dois lados), temos:
Considera a equação 2x - 8 = 3x -10 A letra é a incógnita da equação. A palavra incógnita significa " desconhecida". Na equação acima a incógnita é x; tudo que antecede o sinal da igualdade denomina-se 1º membro, e o que sucede, 2º membro.
Qualquer parcela, do 1º ou do 2º membro, é um termo da equação.
Equação do 1º grau na incógnita x é toda equação que pode ser escrita na forma ax=b, sendo a e b números racionais, com a diferente de zero.
RAIZES DE UMA EQUAÇÃO
Os elementos do conjunto verdade de uma equação são chamados raízes da equação. Para verificar se um número é raiz de uma equação, devemos obedecer à seguinte seqüência:
Substituir a incógnita por esse número.
Determinar o valor de cada membro da equação.
Verificar a igualdade, sendo uma sentença verdadeira, o número considerado é raiz da equação. Exemplos: Verifique quais dos elementos do conjunto universo são raízes das equações abaixo, determinando em cada caso o conjunto verdade. Resolva a equação x - 2 = 0, sendo U = {0, 1, 2, 3}. Para x = 0 na equação x - 2 = 0 temos: 0 - 2 = 0 => -2 = 0. (F) Para x = 1 na equação x - 2 = 0 temos: 1 - 2 = 0 => -1 = 0. (F) Para x = 2 na equação x - 2