derivadas
√
(d) f (x) = mx + b. f (x) = m; R; R
(a) f (x) = x + x. f (x) = 1 + 2√1 x ; [0, ∞); (0, ∞)
(b) f (x) = 1, 5x2 − x + 3, 7. f (x) = 3x − 1; R; R
(c) f (x) =
3+x
.
1 − 3x
f (x) =
10
;R
(1−3x)2
− { 13 }; R − { 13 }
1
1
(e) f (x) = x − .
2
3
1
(f) g(t) = √ . t f (x) = 12 ; R; R
g (t) =
Quest˜ ao 2. Se g(x) = x2/3 , mostre que g (0) n˜ao existe. Se a = 0, encontre g (a).
−1
√ ; (0, ∞); (0, ∞)
2t t
2
3a1/3
Quest˜ ao 3. Utilizando a regra do produto, calcule a derivada das fun¸c˜oes abaixo:
(a) y = (2x − 3)(x2 − 5x) y = 2(x2 − 5x) + (2x − 3)(2x − 5) = 6x2 − 26x + 15
(b) w = (t − 1)(t + 3) w = 2t + 2
(c) p = (t2 − 5)(2t + 3) p = 6t2 + 6t − 10
Quest˜ ao 4. Derive:
(a) y = 3x6 + 9x − 3
5
(b) y = x− 9
y =−
√
9
7
(c) y = 10 x6 − √ x √
5
7
(d) y = x x2 + 4 √ x x
y = 18x5 + 9
5
9x
14
9
y =
60
√
77x
y =
9
√
7
+
x2
7
√9
2 x3
−
√45
2 x11
Quest˜ ao 5. Utilizando a regra do quociente, determine a derivada das fun¸co˜es abaixo:
2x − 3
13
(x+5)2 x+5 t2 − 2t
3t2 +8t−8
(b) w =
(3t+4)2
3t + 4
5
−10t+15
(c) p = 2
(t2 −3t+5)2 t − 3t + 5
(a) y =
Quest˜ ao 6. Utilizando a regra da cadeia, calcule a derivada das fun¸co˜es abaixo:
(a) y = sin(4x)
(b) y = e3x
(c) y = esin t
(d) y =
√
3.e3x
3x + 1
√
x + ex
(j) y = cos(5x) −5. sin(5x)
(l) y = sin(t3 ) 3t2 . cos(t3 )
cos t.esin t
(e) y = ln(2t + 1)
(f) y =
4. cos(4x)
(m) y = cos(ex ) −ex . sin(ex )
√3
2 3x+1
(n) y = etg x
2
2t+1
etg x . sec2 x
(o) y = (t2 + 3)4
1+ex
√
2 x+ex
8t.(t2 + 3)3
(p) y = tg(3x) 3. sec2 (3x)
(g) y = cos(1 − x2 ) 2x. sin(1 − x2 )
(q) y = sin(cos x) − sin x. cos(cos x)
(h) y = (sin x + cos x)3
(r) y = sec(3x) 3 sec(3x). tg(3x)
(i) y = ln(t2 + 3t + 9)
3(sin x + cos x)2