data mining
Descrição (Description) É a tarefa utilizada para descrever os padrões e tendências revelados pelos dados. A descrição geralmente oferece uma possível interpretação para os resultados obtidos. A tarefa de descrição é muito utilizada em conjunto com as técnicas de análise exploratória de dados, para comprovar a influência de certas variáveis no resultado obtido.
Classificação (Classification) Uma das tarefas mais comuns, a Classificação, visa identificar a qual classe um determinado registro pertence. Nesta tarefa, o modelo analisa o conjunto de registros fornecidos, com cada registro já contendo a indicação à qual classe pertence, a fim de ’aprender’ como classificar um novo registro (aprendizado supervisionado). Por exemplo, categorizamos cada registro de um conjunto de dados contendo as informações sobre os colaboradores de uma empresa: Perfil Técnico, Perfil Negocial e Perfil Gerencial. O modelo analisa os registros e então é capaz de dizer em qual categoria um novo colaborador se encaixa. A tarefa de classificação pode ser usada por exemplo para:
Determinar quando uma transação de cartão de crédito pode ser uma fraude;
Identificar em uma escola, qual a turma mais indicada para um determinado aluno;
Diagnosticar onde uma determinada doença pode estar presente;
Identificar quando uma pessoa pode ser uma ameaça para a segurança.
Estimação (Estimation) ou Regressão (Regression) A estimação é similar à classificação, porém é usada quando o registro é identificado por um valor numérico e não um categórico. Assim, pode-se estimar o valor de uma determinada variável analisando-se os valores das demais. Por exemplo, um conjunto de registros contendo os valores mensais gastos por diversos tipos de consumidores e de acordo com os hábitos de cada um. Após ter analisado os dados, o modelo é capaz de dizer qual será o valor gasto por um novo consumidor. A tarefa de estimação pode ser usada por exemplo para:
Estimar a quantia a ser gasta por uma família