conjuntos numéricos

409 palavras 2 páginas
CONJUNTOS NUMÉRICOS

INTRODUÇÃO: Para desenvolver a matemática hoje estudada, inúmeras mudanças na organização de todos os conceitos matemáticos foram necessárias. A concepção dos conjuntos numéricos recebeu maior rigor em sua construção com Georg Cantor, que pesquisou a respeito do número infinito. Cantor iniciou diversos estudos sobre os conjuntos numéricos, constituindo, assim, a teoria dos conjuntos.

DESENVOLVIMENTO: Conjunto dos Números Naturais
São todos os números inteiros positivos, incluindo o zero. É representado pela letra maiúscula N.
Caso queira representar o conjunto dos números naturais não-nulos (excluindo o zero), deve-se colocar um * ao lado do N:
N = {0,1,2,3,4,5,6,7,8,9,10, ...}
N* = {1,2,3,4,5,6,7,8,9,10,11, ...}

Conjunto dos Números Inteiros
São todos os números que pertencem ao conjunto dos Naturais mais os seus respectivos opostos (negativos).
São representados pela letra Z:

Z = {... -4, -3, -2, -1, 0, 1, 2, 3, 4, ...}

O conjunto dos inteiros possui alguns subconjuntos, eles são:

- Inteiros não negativos
São todos os números inteiros que não são negativos. Logo percebemos que este conjunto é igual ao conjunto dos números naturais.
É representado por Z+:

Z+ = {0,1,2,3,4,5,6, ...}

- Inteiros não positivos
São todos os números inteiros que não são positivos. É representado por Z-:

Z- = {..., -5, -4, -3, -2, -1, 0}

- Inteiros não negativos e não-nulos
É o conjunto Z+ excluindo o zero. Representa-se esse subconjunto por Z*+:

Z*+ = {1, 2, 3, 4, 5, 6, 7, ...}

Z*+ = N*

- Inteiros não positivos e não nulos
São todos os números do conjunto Z- excluindo o zero. Representa-se por Z*-.

Z*- = {... -4, -3, -2, -1}

Conjunto dos Números Racionais
Os números racionais é um conjunto que engloba os números inteiros (Z), números decimais finitos (por exemplo, 743,8432) e os números decimais infinitos periódicos (que repete uma sequência de algarismos da parte decimal infinitamente), como "12,050505...",

Relacionados

  • conjunto numerico
    602 palavras | 3 páginas
  • CONJUNTOS NUMERICOS
    768 palavras | 4 páginas
  • conjuntos numericos
    313 palavras | 2 páginas
  • Conjuntos numéricos
    1014 palavras | 5 páginas
  • conjuntos numericos
    1821 palavras | 8 páginas
  • conjuntos numericos
    2076 palavras | 9 páginas
  • Conjuntos numéricos
    1590 palavras | 7 páginas
  • Conjuntos Numericos
    981 palavras | 4 páginas
  • Conjuntos numéricos
    980 palavras | 4 páginas
  • Conjuntos Numéricos
    385 palavras | 2 páginas