Caracteristica dos vertebrados
Dado o plano cartesiano, vamos estabelecer a distância entre os pontos A e B.
Podemos observar que os pontos possuem coordenadas, sendo o ponto A (xa,ya) e B (xb,yb), note a formação do triângulo retângulo ABC, onde os lados BC: cateto, AC: cateto e AB: hipotenusa.
Verificamos que a distância entre os pontos A e B é a hipotenusa do triângulo retângulo, que pode ser calculada aplicando o Teorema de Pitágoras. Com o auxílio da Álgebra e deconhecimentos geométricos podemos generalizar e construir uma fórmula que determine a distância entre dois pontos no plano, conhecendo suas coordenadas.
Cateto BC: yb – ya
Cateto AC: xb – xa
Hipotenusa AB: distância (D)
Pelo Teorema de Pitágoras temos: “o quadrado da hipotenusa é igual à soma dos quadrados dos catetos”
Exercício de matemática
Exemplo 1
Dados os pontos A (2,-3) e B (4,5), determine a distância entre eles.
xa: 2 xb: 4 ya: -3 yb: 5
Exemplo 2
Calcule a distância entre os pontos P(-2,3) e Q(-5,-9).
xa: -2 xb: -5 ya: 3 yb: -9
1 - Introdução
A Geometria Analítica é uma parte da Matemática , que através de processos particulares , estabelece as relações existentes entre a Álgebra e a Geometria. Desse modo , uma reta , uma circunferência ou uma figura podem ter suas propriedades estudadas através de métodos algébricos .
Os estudos iniciais da Geometria Analítica se deram no século XVII , e devem-se ao filósofo e matemático francês René Descartes (1596 - 1650), inventor das coordenadas cartesianas (assim chamadas em sua homenagem), que permitiram a representação numérica de propriedades geométricas. No seu livro Discurso sobre o Método, escrito em 1637, aparece a célebre frase em latim "Cogito ergo sum" , ou seja: "Penso, logo existo".
1.1 - Coordenadas cartesianas na reta
Seja a reta r na Fig. abaixo e sobre ela tomemos um ponto O chamado origem.
Adotemos uma unidade de medida e suponhamos que os comprimentos medidos a partir de O, sejam