Aula tema
O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. O uso de funções pode ser encontrado em diversos assuntos. Por exemplo, na tabela de preços de uma loja, a cada produto corresponde um determinado preço. Outro exemplo seria o preço a ser pago numa conta de luz, que depende da quantidade de energia consumida.
Observe, por exemplo, o diagrama das relações abaixo:
[pic]
A relação acima não é uma função, pois existe o elemento 1 no conjunto A, que não está associado a nenhum elemento do conjunto B.
[pic]
A relação acima também não é uma função, pois existe o elemento 4 no conjunto A, que está associado a mais de um elemento do conjunto B.
Agora preste atenção no próximo exemplo:
[pic]
A relação acima é uma função, pois todo elemento do conjunto A, está associado a somente um elemento do conjunto B.
DOMÍNIO E IMAGEM DE UMA FUNÇÃO:
O domínio de uma função é sempre o próprio conjunto de partida, ou seja, D=A. Se um elemento x ∈A estiver associado a um elemento y ∈B, dizemos que y é a imagem de x (indica-se y=f(x) e lê-se “y é igual a f de x”).
Exemplo: se f é uma função de IN em IN (isto significa que o domínio e o contradomínio são os números naturais) definida por y=x+2. Então temos que:
1. A imagem de 1 através de f é 3, ou seja, f(1)=1+2=3;
2. A imagem de 2 através de f é 4, ou seja, f(2)=2+2=4;
De modo geral, a imagem de x através de f é x+2, ou seja: f(x)=x+2. Numa função f de A em B, os elementos de B que são imagens dos elementos de A através da aplicação de f formam o conjunto imagem de f.
Com base nos diagramas acima, concluímos que existem 2 condições para uma relação f seja uma função:
Observações:
3. Como x e y têm seus valores variando