Atps de matematica

551 palavras 3 páginas
INTRODUÇÃO

O objetivo deste trabalho é entender a importância da fórmula de bháskara, sabemos que o conhecimento adquirido neste trabalho irá nos proporcionar fórmulas adequadas para uma melhor administração financeira. Veremos que alguns cálculos usados no nosso cotidiano serão apresentados de uma maneira simples e objetiva, com o intuito de nos ajudar a praticar um raciocínio lógico, veremos também como a matemática financeira nos ajuda, com suas fórmulas a melhor organização e controle de gastos e fluxo de caixa, deixando em evidência os prós e contras, objetivos a serem alcançados, desafios e obstáculos a serem superados.

PESQUISA SOBRE FÓRMULA DE BHÁSKARA

Para a resolução de uma equação do segundo grau completa ou incompleta, podemos recorrer à fórmula geral de resolução:

Esta fórmula também é conhecida como fórmula de Bhaskara.
O valor b2 -4ac é conhecido como discriminante da equação e é representado pela letra grega Δ. Temos então que Δ = b2 -4ac, o que nos permitir escrever a fórmula geral de resolução como:

Resolução de equações do 2° grau incompletas
Para a resolução de equações incompletas podemos recorrer a certos artifícios. Vejamos:
Para o caso de apenas b = 0 temos:

Portanto para equações do tipo ax2 + c = 0, onde b = 0, podemos utilizar a fórmula simplificada para calcularmos as suas raízes. Observe no entanto que a equação só possuirá raízes no conjunto dos números reais se .
Para o caso de apenas c = 0 temos:

Portanto para equações do tipo ax2 + bx = 0, onde c = 0, uma das raízes sempre será igual a zero e a outra será dada pela fórmula .
Para o caso de b = 0 e c = 0 temos:

Podemos notar que ao contrário dos dois casos anteriores, neste caso temos apenas uma única raiz real, que será sempre igual a zero.
Discriminante da equação do 2° grau
O cálculo do valor do discriminante é muito importante, pois através deste valor podemos determinar o número de raízes de uma equação do segundo grau.
Como visto acima, o

Relacionados

  • ATPS MATEMATICA
    1122 palavras | 5 páginas
  • ATPS MATEMÁTICA
    661 palavras | 3 páginas
  • ATPS Matemática
    1854 palavras | 8 páginas
  • ATPS MATEMATICA
    2431 palavras | 10 páginas
  • atps matematica
    1647 palavras | 7 páginas
  • Atps Matemática
    1880 palavras | 8 páginas
  • ATPS - Matemática
    1952 palavras | 8 páginas
  • atps de matematica
    1599 palavras | 7 páginas
  • Atps de Matemática
    1620 palavras | 7 páginas
  • ATPS Matematica
    2812 palavras | 12 páginas