APOSTILA QUIMICA GERAL
Vamos lá!
Existem fórmulas para o cálculo das derivadas das funções - as quais serão mostradas no decorrer deste curso - mas, por enquanto, vamos calcular a derivada de uma função simples, usando a definição. Isto servirá como um ótimo exercício introdutório, que auxiliará no entendimento pleno da definição acima.
Calcule a derivada da função y = x2 , no ponto x = 10.
Temos neste caso: y = f(x) = x2 f(x + x) = (x + x)2 = x2 + 2x. x + ( x)2 f(x + x) - f(x) = x2 + 2x. x + ( x)2 - x2 = 2x. x + ( x)2
y = f(x + x) - f(x) = x2 + 2x. x + ( x)2 - x2 = 2x. x + ( x)2
Portanto,
Observe que colocamos na expressão acima, x em evidencia e, simplificamos o resultado obtido.
Portanto a derivada da função y = x2 é igual a y ' = 2x .
Logo, a derivada da função y = x2, no ponto x = 10 , será igual a : y ' (10) = 2.10 = 20.
Qual a interpretação geométrica do resultado acima?
Ora, a derivada da função y = x2 , no ponto de abcissa x = 10 , sendo igual a 20, significa que a tangente trigonométrica da reta tangente à cuQual a interpretação geométrica do resultado acima?
Ora, a derivada da função y = x2 , no ponto de abcissa x = 10 , sendo igual a 20, significa que a tangente trigonométrica da reta tangente à curva y = x2 , no ponto x = 10 , será também igual a 20 , conforme teoria vista acima.
Ora, sendo o ângulo formado por esta reta tangente com o eixo dos x , será um ângulo tal que tg = 20. Consultando uma tábua trigonométrica OU através de uma calculadora científica, concluímos que
87º 8' 15" .
Então, isto significa que a reta tangente à curva de equação y = x2 , no ponto de abcissa x = 10, forma com o eixo dos x um ângulo igual aproximadamente a 87º 8' 15" .
Agora, calcule como exercício inicial, usando a definição, a derivada da função y = 5x no ponto de abcissa x = 1000 .
Resposta: 5.
Paulo Marques - Feira de Santana - BA - 02 de janeiro de 2000.