algarismos significados
Excetuando-se quando todos os números envolvidos são inteiros (por exemplo o número de pessoas numa sala), é impossível determinar o valor exato de determinada quantidade. Assim sendo, é importante indicar a margem de erro numa medição indicando os algarismos significativos, sendo estes os dígitos com significado numa quantidade ou medição. Utilizando algarismos significativos, o último dígito é sempre incerto. Desta forma, é importante utiliza-los em trabalhos científicos.
Diz-se que uma representação tem n algarismos significativos quando se admite um erro no algarismo seguinte da representação. Por exemplo, 1/7 = 0,14 com dois algarismos significativos (já que o erro está na terceira casa decimal: 1/7 = 0,1428571429). Analogamente, 1/30 = 0,0333 com três algarismos significativos (erro na quinta casa decimal).
Para ilustrar, imagine que pediu a um amigo para medir a temperatura de água e ele disse-lhe que esta se encontrava à 22,0° C. Neste caso, o algarismo duvidoso é o 0, pois não se sabe ao certo se a temperatura é por exemplo, 21,99 ou 22,01. Em suma tal remete -se ao facto dos arredondamentos serem realizados e nem sempre serem conhecidos. Para entender este conceito, imagine que um amigo seu lhe contou que na realidade a medição foi de 21,689. Nesse contexto pode-se introduzir o conceito de precisão e exactidão. 22 é um número exacto, porém 21,689 é um número mais preciso, precisará do valor preciso para realizar um cálculo matemático, por exemplo, mas didacticamente adopta-se o 22.
Índice [esconder]
1 Identificando algarismos significativos
2 Operações com algarismos significativos
2.1 Soma e subtração
2.2 Multiplicação e divisão
2.3 Logarítmos comuns
3 Referências
Identificando algarismos significativos[editar | editar código-fonte]
Algarismos significativos ---> Conjunto de algarismos corretos de uma