Administração

1289 palavras 6 páginas
Logaritmo

1 - INTRODUÇÃO
O conceito de logaritmo foi introduzido pelo matemático escocês John Napier (1550-1617) e aperfeiçoado pelo inglês Henry Briggs (1561-1630). A descoberta dos logaritmos deveu-se sobretudo à grande necessidade de simplificar os cálculos excessivamente trabalhosos para a época, principalmente na área da astronomia, entre outras. Através dos logaritmos, pode-se transformar as operações de multiplicação em soma, de divisão em subtração, entre outras transformações possíveis, facilitando sobremaneira os cálculos. Na verdade, a idéia de logaritmo é muito simples, e pode-se dizer que o nome logaritmo é uma nova denominação para expoente, conforme veremos a seguir.
Assim, por exemplo, como sabemos que 42 = 16 , onde 4 é a base, 2 o expoente e 16 a potência, na linguagem dos logaritmos, diremos que 2 é o logaritmo de 16 na base 4. Simples, não é?
Nestas condições, escrevemos simbolicamente: log416 = 2.
Outros exemplos:
152 = 225, logo: log15225 = 2
63 = 216, logo: log6216 = 3
54 = 625, logo: log5625 = 4
70 = 1, logo: log71 = 0
2 - DEFINIÇÃO
Dados os números reais b (positivo e diferente de 1), N (positivo) e x , que satisfaçam a relação bx = N, dizemos que x é o logaritmo de N na base b. Isto é expresso simbolicamente da seguinte forma: logbN = x. Neste caso, dizemos que b é a base do sistema de logaritmos, N é o logaritmando ou antilogaritmo e x é o logaritmo.
Exemplos:
a) log28 = 3 porque 23 = 8.
b) log41 = 0 porque 40 = 1.
c) log39 = 2 porque 32 = 9.
d) log55 = 1 porque 51 = 5.
A FUNÇÃO LOGARÍTIMICA
Considere a função y = ax , denominada função exponencial, onde a base a é um número positivo e diferente de 1, definida para todo x real.
Observe que nestas condições, ax é um número positivo, para todo x ∈ R, onde R é o conjunto dos números reais.
Denotando o conjunto dos números reais positivos por R+* , poderemos escrever a função exponencial como segue: f: R → R+* ; y = ax , 0 < a ≠ 1
Esta função é bijetora, pois:
a) é

Relacionados

  • administração
    2095 palavras | 9 páginas
  • administraçao
    628 palavras | 3 páginas
  • Administração
    1275 palavras | 6 páginas
  • administraçao
    8588 palavras | 35 páginas
  • administracao
    1323 palavras | 6 páginas
  • Administração
    1284 palavras | 6 páginas
  • Administração
    501 palavras | 3 páginas
  • Administração
    2828 palavras | 12 páginas
  • Administração
    1291 palavras | 6 páginas
  • Administração
    2648 palavras | 11 páginas