zfgafg

717 palavras 3 páginas
Escola estadual Ana Julia de Carvalho mousinho

Trabalho de Matemática
Alunos: José Kemerson, francielly sierline
Assunto: Trigonometria
Turno: Vespertino
Serie: 3° B

A Trigonometria
A Trigonometria (trigono: triângulo e metria: medidas) é o estudo da Matemática responsável pela relação existente entre os lados e os ângulos de um triângulo. Nos triângulos retângulos (possuem um ângulo de 90º), as relações constituem os chamados ângulos notáveis, 30º, 45º e 60º, que possuem valores constantes representados pelas relações seno, cosseno e tangente. Nos triângulos que não possuem ângulo reto, as condições são adaptadas na busca pela relação entre os ângulos e os lados.
Seno
Dado um triângulo retângulo, o seno de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto oposto a este ângulo e o comprimento da hipotenusa, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o seno de um ângulo qualquer pode ser visualizado na projeção do seu raio (por definição igual a 1) sobre o eixo vertical.

Cosseno
Dado um triângulo retângulo, o cosseno de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto adjacente a este ângulo e o comprimento da hipotenusa, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o cosseno de um ângulo qualquer pode ser visualizado na projeção do seu raio (por definição igual a 1) sobre o eixo horizontal.
Como o cosseno é esta projeção, e o raio do círculo trigonométrico é igual a 1, segue que, ou seja, a imagem do cosseno é o intervalo fechado
Tangente
Dado um triângulo retângulo, a tangente de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto oposto a este ângulo e o comprimento do cateto adjacente a ele, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o valor da tangente de

Relacionados