Yasss

1002 palavras 5 páginas
Etapa 2

Passo 1.2
Pesquisar mais sobre a constante de Euler e fazer um resumo sobre esse assunto de pelo menos uma página, constando dos dados principais a respeito do assunto e curiosidades. Existem inúmeros sites na internet que traz informações ricas sobre esse assunto. Abaixo deixamos alguns para que possa ser pesquisado, além do Wikipédia:

Constante de Euler
A constante matemática e (algumas vezes chamada de número de Euler em homenagem ao matemático suíço Leonhard Euler, ou constante de Napier em homenagem ao matemático escocês John Napier, que introduziu os logaritmos) é a base da função dos logaritmos naturais. Seu valor aproximado é:

A constante de Euler
Juntamente com o π e a constante imaginária i, o e é uma das mais importantes constantes matemáticas. Possui uma porção de definições equivalentes, entre elas a mostrada a seguir:

O número e é um número irracional e transcendente (como pi). A irracionalidade de e foi demonstrada por Lambert em1761 e mais tarde por Euler. A prova da transcendência de foi estabelecida por Hermite em 1873.
Conjecturou-se que e é um número normal ou aleatório.
Ele aparece (com outras constantes fundamentais) na identidade de Euler, considerada a expressão mais "bela" da matemática:

Obtém-se tal relação por meio da fórmula:

que, por sua vez, advém da série de Taylor para .
Leonhard Euler começou a usar a letra e para representar a constante em 1727, e o primeiro uso de e foi na publicação Euler’s Mechanica (1736). As verdadeiras razões para escolha da letra são desconhecidas, mas especula-se que seja porque e é a primeira letra da palavra exponencial.
Outra aparição do número de Euler é na probabilidade: caso se escolham números entre e 1 até que o seu total ultrapasse 1, o número mais provável de seleções será igual a e.
Passo 1.3
Construir uma tabela com os cálculos e resultados aplicados na fórmula abaixo, utilizando os seguintes valores para n = {1, 5, 10, 50, 100, 500, 1000, 5000, 10000,

Relacionados