Trabalho
A cada um dos agrupamentos que podemos formar com certo número de elementos distintos, tal que a diferença entre um agrupamento e outro se dê apenas pela mudança de posição entre seus elementos, damos o nome de permutação simples.
Fórmula da Permutação Simples
Na página sobre fatoriais vimos que 4 . 3 . 2 . 1 é igual a 4!, então se chamarmos de Pn a permutação simples den elementos distintos, podemos calculá-la através da seguinte fórmula:
Pn = n!
EXEMPLOS:
Quantos anagramas podemos formar a partir da palavra ORDEM?
Um anagrama é uma palavra ou frase formada com todas as letras de outra palavra ou frase. Normalmente as palavras ou frases resultantes são sem significado, como já era de se esperar.
Como a palavra ORDEM possui 5 letras distintas, devemos calcular o número de permutações calculando P5. Temos então:
P5 = 5! = 5 . 4 . 3 . 2 . 1 = 120
Na fila do caixa de uma padaria estão três pessoas. De quantas maneiras elas podem estar posicionadas nesta fila?
Quantos são os anagramas que podemos formar a partir das letras da palavra ERVILHAS, sendo que eles comecem com a letra E e terminem com vogal?
Como na primeira posição sempre teremos a letra E, o número de possibilidades nesta posição é igual a 1, podemos até dizer que é igual a P1.
Para a última posição temos disponíveis as letras I e A, pois a letra E já está sendo utilizada no começo, então para a oitava letra temos que calcular P2:
P2 = 2! = 2 . 1 = 2
Como para as demais posições temos 6 letras disponíveis, calculemos então P6:
P6 = 6! = 6 . 5 . 4 . 3 . 2 . 1 = 720
Multiplicando tudo:
1 . 720 . 2 = 1440
Quantos anagramas podemos formar a partir das letras da palavra CURIÓ?
Quantos anagramas podemos formar a partir das letras da palavra ARARA?
Note que embora esta palavra também tenha cinco letras, agora temos apenas duas letras distintas. A letra A que ocorre 3 vezes e a letra R que ocorre 2 vezes. Como devemos proceder nesta situação?
Vimos