Trabalho - mhs
Experimento 6
FEX I
Experimento No 6: OSCILADOR MASSA-MOLA
Objetivos: Verificar que o comportamento estático de uma mola, para pequenas deformações, é corretamente descrito pela Lei de Hooke, e que o período de oscilação de um sistema massa-mola é independente da amplitude, para pequenas oscilações. Medir grandezas físicas diretas e, a partir de gráficos, determinar outras grandezas. Analisar o comportamento estático e dinâmico de um sistema massa-mola suspenso. Teoria: Seja um sistema em situação de equilíbrio estável. Quando esse sistema é levemente afastado dessa situação e liberado, passa a executar um movimento periódico ou oscilatório, em torno da posição de equilíbrio, chamado de Movimento Harmônico Simples (MHS), se não existirem forças dissipativas. O oscilador massa-mola é constituído de um corpo de massa m ligado a uma mola de constante elástica k, presa a uma parede. O corpo executa MHS sobre uma superfície horizontal sem atrito. Veja a figura (6.1). Quando a mola é comprimida (ou esticada) e liberada, o corpo passa a executar um movimento unidimensional de vai-e-vem, dirigido pela força restauradora exercida pela mola:
F=-kx
(6.1)
onde x é a deformação unidimensional da mola. O sinal negativo indica que a força é sempre contrária à deformação, isto é: se x > 0 , então, F < 0; e se x < 0 , então, F > 0. Daí, portanto, o nome de força restauradora, aquela que age no sentido de restaurar o estado de equilíbrio estável original. A equação (6.1) é válida apenas para pequenas deformações da mola (Lei de Hooke).
Figura (6.1): Oscilador massa-mola sobre uma superfície horizontal sem atrito. O corpo executa Movimento Harmônico Simples. A força restauradora atua na direção do movimento, porém no sentido de levar o corpo de massa m para a posição de equilíbrio (x0). (a) Mola esticada (∆x > 0), força para a esquerda (F < 0). (b) Mola comprimida (∆x < 0), força para a direita (F > 0). Em geral, pode-se escrever a seguinte