The structure of crystalline solids problem solutions
CHAPTER 3
THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS
Fundamental Concepts
3.1 Atomic structure relates to the number of protons and neutrons in the nucleus of an atom, as well as the number and probability distributions of the constituent electrons. On the other hand, crystal structure pertains to the arrangement of atoms in the crystalline solid material.
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
3-2
Unit Cells Metallic Crystal Structures
3.2 For this problem, we are asked to calculate the volume of a unit cell of lead. Lead has an FCC crystal structure (Table 3.1). The FCC unit cell volume may be computed from Equation 3.4 as
VC = 16R 3 2 = (16) (0.175 × 10-9 m) 3( 2 ) = 1.213 × 10-28 m3
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
3-3
3.3 This problem calls for a demonstration of the relationship a = cell shown below
4R for BCC. Consider the BCC unit 3
Using the triangle NOP
(NP) 2 = a 2 + a 2 = 2a 2
And then for triangle NPQ,
(NQ) 2 = (QP) 2 + ( NP) 2
But NQ = 4R, R being the atomic radius. Also, QP = a. Therefore,
(4R) 2 = a 2 + 2a 2
or a =
4R 3
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or