Tecnologia
Antenna Circuit Design for RFID Applications
Author: Youbok Lee, Ph.D. Microchip Technology Inc.
REVIEW OF A BASIC THEORY FOR RFID ANTENNA DESIGN
Current and Magnetic Fields
Ampere’s law states that current flowing in a conductor produces a magnetic field around the conductor. The magnetic field produced by a current element, as shown in Figure 1, on a round conductor (wire) with a finite length is given by:
INTRODUCTION
Passive RFID tags utilize an induced antenna coil voltage for operation. This induced AC voltage is rectified to provide a voltage source for the device. As the DC voltage reaches a certain level, the device starts operating. By providing an energizing RF signal, a reader can communicate with a remotely located device that has no external power source such as a battery. Since the energizing and communication between the reader and tag is accomplished through antenna coils, it is important that the device must be equipped with a proper antenna circuit for successful RFID applications. An RF signal can be radiated effectively if the linear dimension of the antenna is comparable with the wavelength of the operating frequency. However, the wavelength at 13.56 MHz is 22.12 meters. Therefore, it is difficult to form a true antenna for most RFID applications. Alternatively, a small loop antenna circuit that is resonating at the frequency is used. A current flowing into the coil radiates a near-field magnetic field that falls off with r-3. This type of antenna is called a magnetic dipole antenna. For 13.56 MHz passive tag applications, a few microhenries of inductance and a few hundred pF of resonant capacitor are typically used. The voltage transfer between the reader and tag coils is accomplished through inductive coupling between the two coils. As in a typical transformer, where a voltage in the primary coil transfers to the secondary coil, the voltage in the reader antenna coil is transferred to the tag antenna coil and vice versa. The