Programa Integrais Derivadas1

886 palavras 4 páginas
# Programa para calculo de integrais e derivadas de funcoes de uma variavel e
#localiza os pontos de maximo e minimo da funcao

# Disponivel em kalilbn.worpress.com
# Copie e cole em um arquivo de texto simples e execute em um terminal digitando python seguido
# pelo nome do arquivo
# Todas as linhas iniciadas com # sao comentarios e nao serao lidas pelo programa.

# importar a biblioteca de funcoes matematicas

import math

#Definicao da funcao a ser trabalhada
#substitua apos o return a funcao com a qual deseja trabalhar.
#Note que em python * indica multiplicacao e ** significa 'elevado a'. Para funcoes mais
#especificas presentes na biblioteca math, inicie sempre com math. deguido pela funcao, como
#math.sin() e math.log() , com o argumento dentro dos parenteses. Note ainda que ao definir a
#funcao aqui usamos y como variavel e depois usaremos x ao longo do resto do programa.
#Recomenda-se sempre, ao definir uma funcao, nao usar uma variavel que tambem seja usada em
#outras partes do programa para evitar conflitos de definicao. def func(y):

return (2*y**2 - 1)**2 * math.exp(-y**2)

#posicao de inicio e fim do intervalo

ini = -15

fim = 15

#Numero de pontos a serem calculados e plotados

np = 200001

#incremento entre um ponto e outro. A funcao float define o numero como real. Note que ao inves
#de fixar o numero de pontos e com ele calcular dx, poderiamos ter escolhido o valor de dx e com
#base nele calcular o numero de pontos. Sinta-se a vontade para alterar isso! dx = (float(fim-ini) / np)

#Valor inicial da integral (deixar como zero a menos que conheca o valor da integral de um ponto
#desejado ate o ponto i):

I = 0

#Contador do numero de pontos (deixar como zero):

p = 0

#Criacao dos arquivos de output com a funcao open, entre aspas os nomes dos arquivos e o
#comando 'w', que indica para abri-los em modo de escrita
#Nesses arquivos serao escritas a funcao
#f(x), sua integral acumulada entre i e x, sua derivada e a derivada segunda,

Relacionados

  • Manual de ortografia da Lingua Portuguesa
    66972 palavras | 268 páginas