pitagoras
Os Pitagóricos chegaram à razoável conclusão, em seus estudos, de que "tudo são números". Essa afirmação parece ter sido fortemente influenciada por uma descoberta importante da Escola Pitagórica, a explicação da harmonia musical através de frações de inteiros.
Os Pitagóricos notaram haver uma relação matemática entre as notas da escala musical e os comprimentos de uma corda vibrante. Uma corda de determinado comprimento daria uma nota. Reduzida a 3/4 do seu comprimento, daria uma nota uma quinta acima. Reduzida à metade de seu comprimento, daria uma nota uma oitava acima. Assim os números 12, 8 e 6, segundo Pitágoras, estariam em "progressão harmônica", sendo 8 a média harmônica de 12 e 6. A média harmônica de dois números a e b é o número h dado por 1/h = (1/a + 1/b) 2.
Pitágoras dava especial atenção ao número 10, ao qual ele chamava de número divino. Dez era a base de contagem dos gregos, e dez são os vértices da estrela de Pitágoras. "A estrela de Pitágoras" é a estrela de cinco pontas formada pelas diagonais de um pentágono regular. O pentágono regular era de grande significação mística para os Pitagóricos e já era conhecido na antiga Babilônia.
As diagonais do pentágono regular cortam-se em pontos de divisão áurea. O ponto de divisão áurea de um segmento AB é o ponto C desse segmento que o divide de modo que a razão entre a parte menor e a parte maior é igual à razão entre a parte maior e o todo, ou seja, AC/CB = CB/AB. Para os antigos gregos, o retângulo áureo, isto é, de lados proporcionais aos segmentos AC e CB, é o retângulo de maior beleza.
A crise na Escola Pitagórica
Uma das mais importantes descobertas da Escola Pitagórica foi a de que dois segmentos nem sempre são comensuráveis, ou seja, nem sempre a razão entre os comprimentos de dois segmentos é uma fração de números inteiros (número racional). Essa descoberta foi uma conseqüência direta do teorema de Pitágoras: se um triângulo retângulo tem catetos de comprimento