mksk

937 palavras 4 páginas
UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA
DEPARTAMENTO DE QUÍMICA E EXATAS – DQE
DISCIPLINA – CÁLCULO I

PROF: ABÍLIO NETO

2ª LISTA DE EXERCÍCIOS – LIMITES
01. Seja

a função representada pelo gráfico abaixo

2
1
3
-1
Analisando o gráfico, determine, se existir
a) lim f ( x )

b) lim f ( x)

c) lim f ( x )

d) lim f ( x )

e) lim f ( x )

f) lim f ( x )

x 3

x 

x 3

x 

x 3

x 4

02. Seja f a função representada graficamente abaixo:

-2

Intuitivamente, determine, se existir:
a) lim f ( x ) x  2

b) lim f ( x ) x  2

c) lim f ( x )

d) lim f ( x )

x  2

x 

03. Calcule os limites a seguir, usando as propriedades dos limites:
a) lim( 3  7 x  5 x 2 ) x 0

x4 x2 3 x  1

d) lim

g) lim 16  x 2 x 4

j) lim 3 2 x  3 x 4

b) lim(  x 5  6 x 4  2) x  1

1  3x



x 0 1  4 x 2  3 x 4



c) lim[( x  4) 3 .( x  2) 1 ]

3

e) lim 
h) lim t 2

t 2  5t  6 t2 2x2  x
2
3x

k) lim x x  1

t3 x2 t  2

f) lim

i) lim

s 1 / 2

s4
2s
l) lim x2 x x 2
3x  4

o) lim 16  x 2

n) lim(e x  4 x )

m) lim ( 2 sen x  cos x  cot x ) x  / 2

x 4

x 4

 x  1 , se x  3
. Calcule:
3 x  7 , se x  3

04. Seja f ( x )  
a) lim f ( x )

b) lim f ( x )

c) lim f ( x )

d) lim f ( x )

e) lim f ( x )

f) lim f ( x )

x 3

x 3

x 5

x 3

x 5

x 5

 x  2x  1, x  3

05. Considerando a função h( x )  

2



7

, x3

, Calcule lim h( x ) e esboce o x 3

gráfico de h .
06. Seja F a função definida por F ( x )  x  4  2 . Calcule os limites indicados, se existirem: a) lim F ( x )

b) lim F ( x )

x 4

x 4

c) lim F ( x ) x 4

 x3

07. Seja g( x )   x  3 , x  3 . Determine, se existirem, lim g( x ) , lim g( x ) e x 3 x 3

 0 , se x  3 lim g( x ) . x 3

 1/ x , x  0
x2 , 0  x 

Relacionados