matetica basica excercicios
908 palavras
4 páginas
Cursos da área de Tecnologia – Cálculo Diferencial e integral 1OPERAÇÕES BÁSICAS E EXPRESSÕES
2
1 1
− ⋅
2 2
c)
3
1 2
−
2
NUMÉRICAS
1) Calcule as potências a seguir:
a)
(−3) 2
b) − 3
d)
− (−2) 3
e)
g)
7
1
c)
f)
34
1
−
3
3
− 23
i)
(−2)1
2
3
h)
2
j)
3
2
Prof.: Luís Humberto Miquelino
3
6) Se n ∈ Z e a ∈ IR * , simplifique as expressões: 4
a 2( n +1) ⋅ a 3− n a 1− n a n+ 4 − a 3 ⋅ a n
d)
a4 ⋅ an
a) a 2 n+1 ⋅ a 1− n ⋅ a 3− n
0
c)
a 2 n + 3 ⋅ a n −1
b)
a 2( n −1)
l) 0 7
7) Simplifique as expressões:
2) Se n ∈ IN , calcule o valor de
a)
A = (−1) 2 n − (−1) 2 n+3 + (−1) 3n − (−1) n .
8 + 32 + 72 − 50
3
b) 128 − 3 250 + 3 54 − 3 16
c)
d)
3)Calcule:
a)
d)
g)
3 −1
b)
e)
(0,1) −2
1
3
h)
− (−3)
−1
( − 2) −1
1
2 −3
c)
−2
f)
a 3 ab 4 + b3 a 4 b + 3 a 4 b 4 − 3ab3 ab
− 3 −1
3
−
2
8) Efetue as operações indicadas com as raízes:
−3
a)
3 ⋅ 12
b)
c)
(0,25)−3
i)
5 108 + 2 243 − 27 + 2 12
3
1
:
2
2
d)
4:4 2
f)
3
e)
3
3 ⋅3 2
3
4) Simplifique as expressões, supondo a⋅b ≠ 0.
a)
c)
(a
2
[(a
3
⋅ b3
) ⋅ (a
⋅ b2
2
3
⋅ b2
)
3
)]
2 3
b)
d)
9) Efetue as operações:
a) 2 3 3 5 − 2 20 − 45
(
(a ⋅ b )
(a ⋅ b )
4
2 3
2 2
a 3 ⋅ b −4
−2 2
a ⋅b
b)
3
c)
d)
e)
(a
3
) ⋅ (a ⋅ b )
(a ⋅ b )
⋅b
−2 −2
−1
−2 3
2 −3
f)
(a
−1
5) Calcule o valor das expressões:
a)
2 −1 − (−2) 2 + (−2) −1
2 2 + 2 −2
b)
3 2 − 3 −2
32 + 3−2
)
+ b −1 ⋅ (a + b )
−1
24 : 3 3
5 5 1
:
2
2
)
( 20 − 45 + 3 125 ): 2 5
(6 + 2 )⋅ (5 − 2 )
(2 3 + 3 2 )⋅ (5 3 − 2 2 )
(3 + 2 )
2
e)
10) Racionalize o denominador de cada