matemática aplicada
- Função Custo
A função custo está relacionada aos gastos efetuados por uma empresa, indústria, loja, na produção ou aquisição de algum produto. O custo pode possuir duas partes: uma fixa e outra variável. Podemos representar uma função custo usando a seguinte expressão: C(x) = Cf + Cv, onde Cf: custo fixo e Cv:custo variável
- Função Receita
A função receita está ligada ao faturamento bruto de uma entidade, dependendo do número de vendas de determinado produto.
R(x) = px , onde p: preço de mercado e x: nº de mercadorias vendidas.
- Função Lucro
A função lucro diz respeito ao lucro líquido das empresas, lucro oriundo da subtração entre a função receita e a função custo.
L(x) = R(x) – C(x)
Ex: Uma siderúrgica fabrica pistões para montadoras de motores automotivos. O custo fixo mensal de R$ 950,00 inclui conta de energia elétrica, de água, impostos, salários e etc. Existe também um custo variável que depende da quantidade de pistões produzidos, sendo a unidade R$ 41,00. Considerando que o valor de cada pistão no mercado seja equivalente a R$ 120,00 , monte as Funções Custo, Receita e Lucro. Calcule o valor do lucro líquido na venda de 1000 pistões e quantas peças, no mínimo, precisam ser vendidas para que se tenha lucro.
Função Custo total mensal:
C(x) = 950 + 41x
Função Receita
R(x) = 120x
Função Lucro
L(x) = 120x – (950 + 41x)
Lucro líquido na produção de 1000 pistões
L(1000) = 120*1000 – (950 + 41 * 1000)
L(1000) = 120.000 – (950 + 41000)
L(1000) = 120.000 – 950 - 41000
L(1000) = 120.000 – 41950
L(1000) = 78.050
O lucro líquido na produção de 1000 pistões será de R$ 78.050,00.
Para que se tenha lucro é preciso que a receita seja maior que o custo.
R(x) > C(x)
120x > 950 + 41x
120x – 41x > 950
79x > 950 x > 950 / 79 x > 12
Para ter lucro é preciso vender acima de 12 peças.
Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola
Exemplo 1
Um fabricante pode produzir calçados ao