Matematica
1 – Uma escola tem 9 professores de matemática. Quatro deles deverão representar a escola em um congresso. Quantos grupos de 4 são possíveis? Os agrupamentos são combinações simples, pois um deles se distingue do outro somente quando apresenta pelo menos uma pessoa diferente. Invertendo a ordem dos elementos, não alteramos o grupo.
Calculamos inicialmente os arranjos simples formados por 4 entre os 9 professores de matemática (mi):
Mas aqui consideramos distintos os agrupamentos do tipo (m3,m7,m6,m9) e (m7,m3,m6,m9)
A quantidade de agrupamentos formados por esses professores, mudando-se apenas a ordem, é dada por P4 = 4!=24.
Logo, o número de combinações simples será o quociente 3024:24=126.
2. Ainda usando o exemplo anterior. Dos 9 professores de matemática dentre os quais 4 irão a um congresso, calcular quantos grupos serão possíveis.
3. Resolver a equação Cx, 2 = 3.
Logo V = {3}
4. Dos 12 jogadores levados para uma partida de vôlei, apenas 6 entrarão em quadra no início do jogo. Sabendo que 2 são levantadores e 10 são atacantes, como escolher 1 levantador e 5 atacantes?
Dos 2 levantadores escolheremos 1, e dos 10 atacantes apenas 5 serão escolhidos. Como a ordem não faz diferença, temos:
escolhas do levantador.
escolhas dos 5 atacantes.
Logo, teremos 2 • 252 = 504 formas de escolher o time.
5. Durante o jogo, 2 atacantes e o levantador foram substituídos. De quantas formas isso poderia ser feito?
Dos jogadores que não estavam na quadra, 1 era levantador e 5 eram atacantes. Assim, só há uma forma de substituir o levantador e C5, 2 formas de substituir os dois atacantes. Logo, as substituições poderiam ter sido feitas de:
formas diferentes.
6. Com cinco alunos, quantas comissões de três alunos podem ser formadas?
comissões.
7. De quantos modos podemos escolher 2 objetos em um grupo de 6 objetos distintos?
modos.