Inequações
I – INTRODUÇÃO: Os sistemas de equação são ferramentas muito comuns na resolução de problemas em várias áreas ( matemática, química, física, engenharia,...) e aparecem sempre em concursos e exames, como é o caso do vestibular. Os sistemas, geralmente, são resolvidos com uma certa facilidade o que causa muitas vezes uma desatenção, por parte do aluno, já que ele não tem dificuldade para encontrar a solução do sistema. Mas ele esquece que a dificuldade está na armação e principalmente na solução final da questão. Os sistemas são ferramentas que mesmo funcionando necessitam de alguém que saiba o construir com elas.
II – MÉTODOS DE RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES DO 1º GRAU Além de saber armar o sistema é bom saber fazer a escolha pelo método mais rápido de resolução.
Vou apresentar três métodos sendo que o mais utilizado é o método da adição.
1º) método da adição
Este método consiste em deixar os coeficientes de uma incógnita opostos. Desta forma, somando-se membro a membro as duas equações recai-se em um equação com uma única incógnita.
EXEMPLO: 2x + y = 5 2x + 3y = 2 1º passo: vamos multiplicar a primeira linha por -1 para podermos cortar –2x com 2x
2x + y = 6 . ( - 1 ) - 2x - y = - 6 2x + 3y = 2 2x + 3y = 2 2y = - 4 y = -4/2 y = - 2 2º passo: Substituir y = - 2, em qualquer um das equações acima e encontrar o valor de x.
2x + y = 6 2x + ( -2 ) = 6 2x – 2 = 6 2x = 6 + 2 x = 8/2 x = 4
3º passo: dar a solução do sistema.
S = { (4, -2) }
2º) método da substituição
Este método consiste em isolar uma incógnita numa equação e substituí-la na outra equação do sistema dado, recaindo-se numa equação do 1º grau com uma única incógnita.
EXEMPLO: 2x + y = 5