historia das matrizes
ALINE CAETANO DA SILVA BERNARDES*
Introdução
O termo matriz foi introduzido por James Joseph Sylvester, em 1850, em uma memória publicada no Philosophical Magazine (SYLVESTER, 1850b). Oito anos depois,
Arthur Cayley publicou uma memória sobre matrizes na qual ele definiu as operações entre matrizes e enunciou as propriedades destas operações (CAYLEY, 1858).
As definições apresentadas por Sylvester e Cayley para o termo matriz, nos trabalhos acima mencionados, podem ser vistas nos seguintes extratos:
(…) we must commence, not with a square, but with an oblong arrangement of terms consisting, suppose, of m lines and n columns. This will not in itself represent a determinant, but is, as it were, a Matrix out of which we may form various systems of determinants by fixing upon a number p and selecting at will p lines and p columns, the square corresponding to which we may be termed determinants of the pth order. (SYLVESTER, 1850b: 150)
The term matrix might be used in a more general sense, but in the present memoir I consider only square and rectangular matrices, and the term matrix used without qualification is to be understood as meaning a square matrix; in this restricted sense, a set of quantities arranged in the form of a square, e.g.
(a ,
b,
c)
a ' , b' , c ' a ' ' , b' ' , c ' '
is said to be a matrix. The notion of such a matrix arises naturally from an abbreviated notation for a set of linear equations, viz. the equations
X = ax
+ by
+ cz
Y = a'x
+ b' y
+ c' z
Z = a ' ' x + b' ' y + c ' ' z may be more simply represented by
( X , Y , Z ) = (a ,
b,
a' ,
b' ,
c )( x, y , z ) c' a ' ' , b' ' , c ' '
(CAYLEY, 1858: 17)
*
Professora Assistente do Departamento de Matemática e Estatística da UNIRIO e doutoranda na COPPE-UFRJ
– Programa de Engenharia de Sistemas e Computação.