Halleno Apresenta OEU12

490 palavras 2 páginas
Teoria de Potência Ativa e Reativa
Instantânea e Aplicações
Halleno Vasconcelos Prado
Bolsista de Iniciação Acadêmica
Graduando Engenharia Elétrica
Orientador: Isaac Machado

Sumário
 Motivação;
 Teoria p-q;
 Filtro ativo paralelo;
 Simulações;
 Conclusão;
 Trabalhos futuros.

Motivação
 Compensar Harmônicos:
• O superaquecimento de transformadores e motores elétricos; • Superaquecimento de capacitores para correção de fator de potência;
• Distorção da onda de tensão;
• Dentre outros.

Teoria p-q
 Transformada de eixos:
As componentes de ‘a’,’b’ e eixo alfa:
V‘c’
 no
(1)Va
 cos(
120o )Vb  cos(120o )Vc
1
1
V   (1)Va  ( )Vb  cos( )Vc
2
2

o
VNo
  (cos(
90beta:
))Va  (cos 30o )Vb  (cos150o )Vc eixo V   (0)Va  (

3
3
)Vb  ( )Vc
2
2

Teoria p-q
Vetor de tensão instantânea: e  V   jV 

Tensões num sistema trifásico: Va (t )  2Vcos (t   )
2
)
3
2
Vc(t )  2Vcos (t    )
3
Vb(t )  2Vcos (t   

Em V coordenadas   3V cos(αβ:
t   )
V   3V sin(t   )

Logo:

e  V   jV  e  3V [cos(t   )  j sin(t   )] e  3Ve j (t  )

Teoria p-q
Em coordenadas abc: eabc  Va e j (0)  Vb e eabc 

j (

2
)
3

 Vc e

j(

2
)
3

3 2
V [cos(t   )  j sin(t   )]
2

Logo:
2
e eabc 3

Teoria p-q
Cálculo das potências instantâneas:
S  e.i  (V  jV ).( I  jI  )
S  (V .I  V .I  )  j (V .I  V .I  ) onde, p  V .I  V .I  q  V .I  V .I 

Logo,

 V
 p
 q   V

 


V

V

 I
 I
 

Teoria p-q

Teoria p-q
De:
 V
 p
 q   V

 


V

V

 I
 I
 

Temos:



I

1  V
  

 *
V2  V2  V
 I 
*

V

V 


  pc
 q 
 c

Filtro ativo paralelo:

 A figura abaixo apresenta o diagrama em blocos básico de um filtro ativo paralelo de potência.

Filtro ativo paralelo:

Simulação – PSCAD/EMTDC

Simulação – PSCAD/EMTDC
 Especificações do sistema:
• Rede trifásica com tensão eficaz de linha de 220v à uma frequência de 60Hz.

Relacionados