Diversos
De
Matemática
Escola Técnica Estadual Luiz Navarro de Britto
Data: 23 de Novembro de 2012
Aluna: Luana Daltro Teixeira
Professor: David
Serie: 2º ano Turma: M2º de Logística
Tema: Semelhança de Triângulo e Relação Métrica num Triângulo Retângulo.
Semelhança de Triângulos
Para entender o conceito de semelhança de triângulos, é preciso pensar em dois conceitos diferentes. O conceito de forma, e o conceito de tamanho (escala).
Se você fosse desenhar um mapa, você provavelmente tentaria preservar a forma daquilo que você está mapeando, fazendo o desenho com medidas que guardam as mesmas proporções verificadas no terreno.
Triângulos semelhantes são triângulos que têm a mesma forma. Em particular, para um triângulo, basta que dois de seus ângulos sejam iguais para que tenham a mesma forma (sejam semelhantes). Sabemos que triângulos são polígonos. Sendo assim, o estudo que é feito para identificar a semelhança de figuras poligonais será válido para o estudo da semelhança de triângulos. Com isso, dois triângulos serão semelhantes se satisfizerem duas condições simultaneamente: se seus lados correspondentes possuírem medidas proporcionais e se os ângulos correspondentes forem iguais (congruentes).
Se invertermos a afirmação feita acima, teremos um fato verdadeiro: as condições são satisfeitas somente quando os triângulos são semelhantes.
Vejamos um desenho para que possamos compreender melhor:
Antes, temos que determinar a correspondência dos vértices de cada triângulo, pois assim determinaremos a correspondência dos lados e dos ângulos entre estes dois triângulos.
Os vértices A, B, C correspondem, respectivamente, aos vértices A’, B’, C’. Sendo assim, montaremos as razões de proporcionalidade entre os lados correspondentes.
Uma das condições é que todos os lados correspondentes possuam uma proporcionalidade, que chamaremos neste caso de k. Ressaltando que essa razão foi construída pela divisão de cada lado