Determinação do Alfa de Torção em Tecido Plano e Tecido de Malha
Ao fazermos a medida de uma grandeza física achamos um número que a caracteriza.
Quando este resultado vai ser aplicado, é freqüentemente necessário saber com que confiança podemos dizer que o número obtido representa a grandeza física. Deve-se, então, poder expressar a incerteza de uma medida de forma que outras pessoas possam entende-las e para isso utiliza-se de uma linguagem universal. Também deve-se utilizar métodos adequados para combinar as incertezas dos diversos fatores que influem no resultado.
A maneira de se obter e manipular os dados experimentais, com a finalidade de conseguir estimar com a maior precisão possível o valor da grandeza medida e o seu erro, exige um tratamento adequado que é o objetivo da chamada “Teoria dos Erros”, e que será abordada aqui na sua forma mais simples e suscinta.
Incertezas
É a fração avaliada da menor divisão da escala, isto é, no dígito duvidoso é que reside a incerteza da medida. Se tomarmos, como exemplos, a medida do objeto AB como sendo 8,6 cm, sendo o algarismo 6 o duvidoso, isto significa que a medida AB poderia ser 8,5 ou 8,7 cm; 8,4 ou
8,8 cm. No primeiro caso a amplitude da incerteza é ±0,1 cm e no segundo ±0,2 cm. De forma geral, a amplitude da incerteza é fixada pelo experimentador. Caso ele faça opção para a amplitude de ±0,2, a medida do objeto AB = (8,6 ±0,2) cm. Desta forma o experimentador nos revela que a medida é confiável dentro dos limites de 8,4 a 8,8 cm, mas que o valor mais provável da medida, na sua opinião, é AB = 8,6 cm.
A incerteza de