Desafio matematica
Este trabalho tem por finalidade desafiar nós alunos a estarmos atentos as situações práticas de funções, receita, lucro, demanda, oferta, juros e montante que se encaixe em modelos de funções.
Desenvolver capacidade de transferir conhecimentos da vida e da experiência cotidiana para o ambiente de trabalho e do seu campo de atuação profissional e diferentes modelos organizacionais.
Conceitos:
Função de 1º grau
Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante. Veja alguns exemplos de funções polinomiais do 1º grau: f(x) = 5x - 3, onde a = 5 e b = - 3 f(x) = -2x - 7, onde a = -2 e b = - 7 f(x) = 11x, onde a = 11 e b = 0 Gráfico O gráfico de uma função polinomial do 1º grau, y = ax + b, com a 0, é uma reta oblíqua aos eixos Ox Oy. Exemplo: Vamos construir o gráfico da função y = 3x - 1: Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua: a) Para x = 0, temos y = 3 • 0 - 1 = -1; portanto, um ponto é (0, -1). b) Para y = 0, temos 0 = 3x - 1; portanto, e outro ponto é . Marcamos os pontos (0, -1) e no plano cartesiano e ligamos os dois com uma reta. x y
0 -1 0
Já vimos que o gráfico da função afim y = ax + b é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox. O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a • 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy.
Aplicações
Exemplo 1
Uma pessoa vai escolher um plano de saúde entre duas opções: A e B.
Condições dos planos:
Plano A: cobra um