Dcvd

375 palavras 2 páginas
Medidas de Assimetria e Curtose.
Uma curva representativa de uma distribuição de freqüência pode ser: simétrica ou assimétrica. No segundo caso pode ser assimétrica à esquerda ou à direita, como mostra a figura.

A- distribuição assimétrica à esquerda : Mo < Md < [pic]
B- distribuição simétrica : Mo = Md = [pic]
C- Distribuição assimétrica à direita: Mo > Md > [pic], dessa forma, podemos classificar a assimetria em três grupos : Se Mo - [pic] = 0 assimetria nula ou, distribuição simétrica. Se Mo - [pic] < 0 – assimetria negativa ou à esquerda, Se Mo - [pic] > 0 – assimetria à direita ou positiva.

Coeficiente de assimetria.

Por ser uma medida relativa, permite a comparação entre as medidas de duas distribuições. O coeficiente de assimetria de Pearson é dado por:

Se 0,15 < | As| < 1 , a assimetria é considerada moderada; se | As | ≥ 1, é forte;

Aplicações.

1. Considere os seguintes resultados relativos a três distribuições de freqüência:

|Distribuições |[pic] |Mo |
|A |52 |52 |
|B |45 |50 |
|C |48 |46 |

Determine o tipo de assimetria de cada uma delas.

2. Uma distribuição de freqüência apresenta as seguintes medidas: [pic]= 48,1 ; Md = 47,9 ; e s = 2,12. Calcule o coeficiente de assimetria. 3. Em uma distribuição de freqüência foram encontradas as seguintes medidas: [pic]=33,18; Mo= 27,50 ; Md = 31,67 e s = 12,45.

a) classifique o tipo de assimetria; b) Calcule o coeficiente de assimetria.

4. Considerando a distribuição de freqüência

Relacionados

  • Sistema Cardiovascular
    1288 palavras | 6 páginas
  • Roteiro de negociaçao salarial
    1070 palavras | 5 páginas
  • Sistema nervoso
    1622 palavras | 7 páginas
  • relatorio de analises clinicas
    10848 palavras | 44 páginas
  • Questões de informática fcc
    17593 palavras | 71 páginas