Conclusão sobre funçoes
Simbologia : fog (x) = f(g(x)) ou gof (x) = g(f(x)) .
Veja o esquema a seguir:
Obs : atente para o fato de que fog ¹ gof , ou seja, a operação " composição de funções " não é comutativa .
Exemplo:
Dadas as funções f(x) = 2x + 3 e g(x) = 5x, pede-se determinar gof(x) e fog(x).
Teremos:
gof(x) = g[f(x)] = g(2x + 3) = 5(2x + 3) = 10x + 15 fog(x) = f[g(x)] = f(5x) = 2(5x) + 3 = 10x + 3
Observe que fog ¹ gof .
Exercícios resolvidos:
1 - Sendo f e g duas funções tais que: f(x) = ax + b e g(x) = cx + d . Podemos afirmar que a igualdade gof(x) = fog(x) ocorrerá se e somente se:
a) b(1 - c) = d(1 - a)
b) a(1 - b) = d(1 - c)
c) ab = cd
d) ad = bc
e) a = bc
SOLUÇÃO:
Teremos:
fog(x) = f[g(x)] = f(cx + d) = a(cx + d) + b \ fog(x) = acx + ad + b gof(x) = g[f(x)] = g(ax + b) = c(ax + b) + d \ gof(x) = cax + cb + d
Como o problema exige que gof = fog, fica: acx + ad + b = cax + cb + d
Simplificando, vem: ad + b = cb + d ad - d = cb - b \ d(a - 1) = b(c - 1), que é equivalente a d(a - 1) = b(c - 1), o que nos leva a concluir que a alternativa correta é a letra A. .
2 - Sendo f e g duas funções tais que fog(x) = 2x + 1 e g(x) = 2 - x então f(x) é:
a) 2 - 2x
b) 3 - 3x
c) 2x - 5
*d) 5 - 2x
e) uma função par.
SOLUÇÃO:
Sendo fog(x) = 2x + 1, temos: f[g(x)] = 2x + 1
Substituindo g(x) pelo seu valor, fica: f(2 - x) = 2x + 1
Fazendo uma mudança de variável, podemos escrever 2 - x = u, sendo u a nova variável. Portanto, x = 2 - u.
Substituindo, fica: f(u) = 2(2 - u) + 1 \ f(u) = 5 - 2u
Portanto, f(x) = 5 - 2x , o que nos leva à alternativa D.
Agora