Ciclo de Carnot, Lei de Coulomb, Heisenberg
Em 1824, o cientista Carnot idealizou uma máquina térmica que proporcionaria um rendimento máximo. O Ciclo de Carnot consiste de duas transformações adiabáticas alternadas com duas transformações isotérmicas, sendo que todas elas seriam reversíveis.
Devemos conceber uma máquina térmica onde o gás sofra expansões e compressões segundo o Ciclo de Carnot e onde T1 seja a fonte quente e T2 a fonte fria.
Partindo de A, o gás realiza uma expansão isotérmica AB, recebendo calor de Q1 ( fonte quente). A seguir, ocorre a expansão adiabática BC, durante a qual não há troca de calor. A compressão isotérmica CD se verifica à temperatura T2da fonte fria, e nesta etapa o gás “rejeita” a quantidade Q2 que não foi transformada em trabalho. A compressão adiabática DA se completa sem a troca de calor.
É possível, para este experimento constatar que : Q1/T1 = Q2/T2 assim como o rendimento pode ser descrito como n = 1-(Q2/Q1)
Então para o Ciclo de Carnot temos que o rendimento é função exclusiva das temperaturas absolutas das fontes quentes e fria. n = 1-(T2/T1), este é o rendimento máximo de uma máquina térmica, e como nunca podemos ter T1 = 0 e |T2| > |T1| constatamos que uma máquina térmica jamais terá rendimento de 1 ou seja transformar todo o calor fornecido em trabalho.
Lei de Coulomb
O físico francês Charles Augustin Coulomb desenvolveu uma balança de torção que possibilitou estabelecer uma relação matemática entre a carga de dois corpos e sua força elétrica produzida. ( Uma balança de torção consiste em um mecanismo que é sensível ao torque, ou seja se o corpo for atraído ou sofrer algum tipo de repulsão esta balança pode calcular sua grandeza.)
Assim Coulomb constatou que:
→ A intensidade da força elétrica é diretamente proporcional ao produto das cargas elétricas.
→ A intensidade da força elétrica é inversamente proporcional ao quadrado da distância entre os corpos.
Portanto temos a equação que relaciona a intensidade da força