bacharel
O coeficiente de Poisson, ν, mede a deformação transversal (em relação à direção longitudinal de aplicação da carga) de um material homogêneo e isotrópico. A relação estabelecida é entre deformações ortogonais.[1] [2]
em que: ν = Razão de Poisson (adimensional), εx= Deformação na direção x, que é transversal, εy= Deformação na direção y, que é transversal, εz= Deformação na direção z, que é a longitudinal, εx, εy e εz são também grandezas adimensionais, já que são deformações.
O sinal negativo está incluído na fórmula porque as deformações transversais e longitudinais possuem sinais opostos. Materiais convencionais têm coeficiente de Poisson positivo, ou seja, contraem-se transversalmente quando esticados longitudinalmente e se expandem transversalmente quando comprimidos longitudinalmente.
Módulo de elasticidade
Os módulos elásticos são parâmetros fundamentais para a engenharia e aplicação de materiais, uma vez que estão ligados à descrição de várias outras propriedades mecânicas, como por exemplo, a tensão de escoamento, a tensão de ruptura, a variação de temperatura crítica para a propagação de trincas sob a ação de choque térmico,
E = Módulo de elasticidade ou m s = Tensão aplicada (Pa), e = Deformação elástica longitudinal
Momento de Inércia
o momento de inércia, ou momento de inércia de massa, expressa o grau de dificuldade em se alterar o estado de movimento de um corpo em rotação. Diferentemente da massa inercial (que é um escalar), o momento de inércia ou Tensor de Inércia também depende da distribuição da massa em torno de um eixo de rotação escolhido arbitrariamente. Quanto maior for o momento de inércia de um corpo, mais difícil será fazê-lo girar ou alterar sua rotação. Contribui mais para o aumento do valor do momento de inércia a porção de massa que está afastada do eixo de giro. Um eixo girante fino e comprido, com a mesma massa de um disco que gira em relação ao seu centro, terá um momento de